For citation:
Anishchenko V. S., Akopov A. A., Vadivasova T. E., Okrokvertskhov G. A., Astakhov V. V. Chaos in autooscillating medium due to spatial inhomogeneity. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 4, pp. 60-70. DOI: 10.18500/0869-6632-2004-12-4-60-70
Chaos in autooscillating medium due to spatial inhomogeneity
In the present paper we show that inhomogeneity of a self-sustained oscillating medium can be responsible for the apperance of a chaotic behavior. We compute the maximal Lyapunov exponent by using different calculation methods. It is established that for a fixed spatial point the autocorrelation function of the real amplitude A (t) decays exponentially with the rate that is one order less than the maximal Lyapunov exponent and is defined by the effective phase diffusion coefficient of the chaotic process А(t).
1. Gollub JP, Benson SV. Select Many routes to turbulent convection. Fluid J. Mech. 1980;100(3):449–470; Lesieur М. Turbulence in Fluids. Dordrecht: Springer; 1987. DOI: 10.1007/978-94-009-3545-7_1; Sato Sh, Sano M, Sawada Y. Bifurcation to chaos and dimensionality of attractors in an extended Rayleigh-Benard convection system. Phys. Rev. А. 1988;37(5):1679–1683. DOI: 10.1103/PhysRevA.37.1679; Kida 5., Yamada M, Ohkitani K. A route to chaos and turbulence. Physica D. 1989;37(1–3):116–125; Bohr T, Jensen MH, Paladin G, Vulpiani А. Dynamical Systems Approach to Turbulence. New York: Cambridge University; 1998. 350 p.; Aranson LS, Kramer L. The world of the complex Ginzburg Landau equation. Riev. Modern Phys. 2002;74:99–143.
2. Kuramoto Y. Chemical Oscillations, Waves and Turbulence. Berlin: Springer; 1984; Pomeau Y, Manneville P. Stability and fluctuations of a spatially periodic convective flow. J. Phys. Lett. 1979;40(23):609–612. DOI: ff10.1051/jphyslet:019790040023060900ff. ffjpa-00231699; Chaté H, Manneville P. Transition to turbulence via spatio-temporal intermittency. Phys. Rev. Lett. 1987;58(2):112–115. DOI:https://doi.org/10.1103/PhysRevLett.58.112; Coullet Р, Gil L, Lega J. A form of turbulence associated with defects. Physica D. 1989;37(1–3):91–103; Chaté H. Spatiotemporal intermittency regimes of the one-dimensional complex Ginzburg-Landau equation. Nonlinearity. 1994;7(1):185. DOI 10.1088/0951-7715/7/1/007.
3. Manneville Р, Chaté H. Phase turbulence in the two-dimensional complex Ginzburg-Landau equation Physica. 1996;96:30–46.
4. Ermentrout GB, Kopell N. Frequency plateaus in a chain of weakly coupled oscillators.ТАМ J. Math. Ann. 1984;15:215–237.
5. Yamaguchi Y, Shimizu H. Theory of self-synchronization in the presence of native frequency distribution and external noises. Physica D IID. 1984;11:212–226.
6. Strogatz S.H., Mirollo R.E. Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies. Physica D. 1988;31:143–168.
7. Osipov GV, Sushchik MM. Synchronized clusters and multistability in arrays of oscillators with different natural frequencies. Phys. Веу. E. 1998;58(6): 7198–7207. DOI: 10.1103/PhysRevE.58.7198.
8. Vadivasova TE, Strelkova GI, Anishchenko VS. Phase-frequency synchronization in a chain of periodic oscillators in the presence of noise and harmonic forcings. Phys. Rev. В. 2001;63(3):036225. DOI: 10.1103/PhysRevE.63.036225.
9. Ermentrout GB, Troy WC. Phaselocking in a reaction-diffusion system with a linear frequency gradient. SIAM J. Appl. Math. 1986;46(3):359–367.
10. Akopov AA, Vadivasova TE, Astakhov VV, Matyushkin DD. Partial synchronization in inhomogeneous autooscillatory media. JETP Lett. 2003;29(15): 629–631.
11. Akopov AA, Vadivasova TE, Astakhov VV, Matyushkin DD. Cluster synchronization in an inhomogeneous self-oscillatory medium. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;11(4–5):64–73.
12. Samarsky AA, Gulin AV. Numerical methods. Moscow: Nauka; 1989. 432 p.
13. Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov Exponents From a Time Series. Physica D. 1985. Vol. 16.Р. 285. 16(3):285-317. DOI:10.1016/0167-2789(85)90011-9.
14. Anishchenko VS, Vadivasova TE, Kurths J, Okrokvertskhov GA, Strelkova GI. Correlation analysis оf dynamical chaos. Physica А. 2003:325(1–2):199–212. DOI: 10.1016/S0378-4371(03)00199-7; Anishchenko VS, Vadivasova TE, Okrokvertskhov GA, Strelkova GI. Autocorrelation function and spectral linewidth of spiral chaos in a physical experiment. Phys. Rev. Е. 2004;69(3):036215. DOI: 10.1103/PhysRevE.69.036215.
- 391 reads