For citation:
Nguyen B. H., Tsybulin V. G. Spatiotemporal multistability scenarios for system of three competing species. Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, vol. 33, iss. 6, pp. 843-859. DOI: 10.18500/0869-6632-003171, EDN: SPENBR
Spatiotemporal multistability scenarios for system of three competing species
The aim of this work is to determine the conditions under which multistability is possible in system of three competing species described by reaction–diffusion–advection equations.
Methods. Using the theory of cosymmetry and the concept of ideal free distribution, relations are established for the coefficients of local interaction, diffusion and directed migration, under which continuous families of solutions are possible. Compact scheme of the finite difference method is used to discretize the problem of species distribution on one-dimensional spatial area with periodicity conditions.
Results. Conditions for parameters are found, under which stationary solutions proportional to the resource are obtained, corresponding to the ideal free distribution (IFD). The conditions under which two-parameter families of stationary distributions exist are studied. For parameters corresponding to IFD, family of periodic regimes is obtained in computational experiment.
Conclusion. The obtained results demonstrate variants of multistability of species in resource-heterogeneous area and will further serve as a basis for the analysis of systems of interacting populations.
- Murray J D. Mathematical Biology II: Spatial Models and Biomedical Applications. New York: Springer; 2003. 814 p DOI: 10.1007/b98869.
- Rubin A, Riznichenko G. Mathematical Biophysics. New York: Springer; 2014. 273 p DOI: 10.1007/978-1-4614-8702-9.
- Malchow H, Petrovskii SV, Venturino E. Spatio-temporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation. New York: Chapman and Hall/CRC; 2008. 469 p.
- Cantrell RS, Cosner C, Martínez S, Torres N. On a competitive system with ideal free dispersal. Journal of Differential Equations. 2018;265(8):3464-3493 DOI: 10.1016/j.jde.2018.05.008.
- Frisman YY, Kulakov MP, Revutskaya OL, Zhdanova OL, Neverova G P. The key approaches and review of current researches on dynamics of structured and interacting populations. Computer Research and Modeling. 2019;11(1):119-151 DOI: 10.20537/2076-7633-2019-11-1-119-151.
- Cantrell RS, Cosner C, Lewis MA, Lou Y. Evolution of dispersal in spatial population models with multiple timescales. Journal of Mathematical Biology. 2020;80:3-37 DOI: 10.1007/s00285-018-1302-2.
- Avgar T, Betini GS, Fryxell J M. Habitat selection patterns are density dependent under the ideal free distribution. Journal of Animal Ecology. 2020;89(12):2777-2787 DOI: 10.1111/1365-2656.13352.
- Epifanov AV, Tsybulin V G. Mathematical model of the ideal distribution of related species in a nonhogeneous environment. Vladikavkaz Math. J. 2023;25(2):78-88 (in Russian). 10.46698/t4351-7190-0142-r10.46698/t4351-7190-0142-r.
- Tsybulin V, Zelenchuk P. Predator–prey dynamics and ideal free distribution in a heterogeneous environment. Mathematics. 2024;12(2):275 DOI: 10.3390/math12020275.
- Feudel U. Complex dynamics in multistable systems. Int. J. Bifurc. Chaos. 2008;18(6):1607-1626 DOI: 10.1142/S0218127408021233.
- Felk EV, Kuznetsov AP, Savin A V. Multistability and transition to chaos in the degenerate Hamiltonian system with weak nonlinear dissipative perturbation. Physica A: Statistical Mechanics and its Applications. 2014;410:561-557 DOI: 10.1016/j.physa.2014.05.066.
- Pham VT, Vaidyanathan S, Volos C, Kapitaniak T, editor s. Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors. Cham: Springer; 2018. 497 p DOI: 10.1007/978-3-319-71243-7.
- Budyansky AV, Frischmuth K, Tsybulin V G. Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat. Discrete and Continuous Dynamical Systems-B. 2019;24(2):547-561 DOI: 10.3934/dcdsb.2018196.
- Govorukhin VN, Yudovich V I. Bifurcations and selection of equilibria in a simple cosymmetric model of filtrational convection. Chaos. 1999;9:403-412. . 1.02 DOI: 10.1063/1.166417.
- Yudovich V I. Cosymmetry, degeneracy of the solutions of operator equations and the onset of filtrational convection. Math. Notes. 1991;49(5):540-545 DOI: 10.1007/BF01142654.
- Yudovich V I. Bifurcations under perturbations violating cosymmetry. Doklady Physics. 2004;49(9):522-526 DOI: 10.1134/1.1810578.
- Frischmuth K, Kovaleva ES, Tsybulin V G. Family of equilibria in a population kinetics model and its collapse. Nonlinear Analysis: Real World Applications. 2011;12(1):146-155. 10.1016/j.nonrwa.2010.06.00410.1016/j.nonrwa.2010.06.004.
- Frischmuth K, Budyansky AV, Tsybulin V G. Modeling of invasion on a heterogeneous habitat: taxis and multistability. Applied Mathematics and Computation. 2021;410:126456. 10.1016/j.amc.2021.12645610.1016/j.amc.2021.126456.
- Ha TD, Tsybulin V G. Multistability for a mathematical model of the dynamics of predators and prey in a heterogeneous area. J. Math. Sci. 2024;282:417-428 DOI: 10.1007/s10958-024-07185-y.
- Cantrell RS, Cosner C. Spatial Ecology Via Reaction-Diffusion Equations. Chichester: Wiley; 2003. 428 p DOI: 10.1002/0470871296.
- Nguyen BH, Ha TD, Tsybulin V G. Multistability for system of three competing species. Computer Research and Modeling. 2022;14(6):1325-1342 (in Russian) DOI: 10.20537/2076-7633-2022-14-6-1325-1342.
- Nguyen BH, Tsybulin V G. Mathematical model of three competing populations and multistability of periodic regimes. Izvestiya VUZ. Applied Nonlinear Dynamics. 2023;31(3):316-333 DOI: 10.18500/0869-6632-003038.
- May RM, Leonard W J. Nonlinear aspects of competition between three species. SIAM Journal on Applied Mathematics. 1975;29(2):243-253 DOI: 10.1137/0129022.
- Chi C-W, Wu L-I, Hsu S-B. On the asymmetric May–Leonard model of three competting species. SIAM Journal on Applied Mathematics. 1998;58(1):211-226 DOI: 10.1137/S0036139994272060.
- Hou Z, Baigent S. Heteroclinic limit cycles in competitive Kolmogorov systems. Discrete and Continuous Dynamical Systems. 2013;33(9):4071-4093 DOI: 10.3934/dcds.2013.33.4071.
- Nguyen BH, Tsybulin V G. High order accuracy scheme for modeling the dynamics of predator and prey in heterogeneous environment. Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(3):294-304 DOI: 10.18500/0869-6632003105.
- Nguyen BH, Ha TD, Tsybulin V G. Compact scheme for modelling competing dynamics of populations on a heterogeneous environment. Computational Technologies. 2024;29(5):30-42(in Russian) DOI: 10.25743/ICT.2024.29.5.004.
- Svirezhev YuM, Logofet D O. Resilience of Biological Communities. M.: Nauka; 1978. 352 p.(in Russian).
- Tyutyunov YuV, Titova L I. From Lotka–Volterra to Arditi–Ginzburg: 90 years of evolving trophic functions. Biol. Bull. Rev. 2020;10:167-185 DOI: 10.1134/S207908642003007X.
- Manna K, Volpert V, Banerjee M. Pattern formation in a three-species cyclic competition model. Bull. Math. Biol. 2021;83:52 DOI: 10.1007/s11538-021-00886-4.
- Tsybulin VG, Ha TD, Zelenchuk P A. Nonlinear dynamics of the predator–prey system in a heterogeneous habitat and scenarios of local interaction of species. Izvestiya VUZ. Applied Nonlinear Dynamics. 2021;29(5):751-764 (in Russian) DOI: 10.18500/0869-6632-2021-29-5-751-764.
- Ha TD, Tsybulin VG, Zelenchuk P A. How to model the local interaction in the predator-prey system at slow diffusion in a heterogeneous environment? Ecological Complexity. 2022;52:101026 DOI: 10.1016/j.ecocom.2022.101026.
- Tyutyunov YuV, Govorukhin VN, Tsybulin V G. Modeling study of factors determining efficacy of biological control of adventive weeds. Mathematics. 2024;12(1):160 DOI: 10.3390/math12010160.
- 775 reads