Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Образец для цитирования:

Тукмаков Д. А. Численное моделирование колебаний электрически заряженной гетерогенной среды, обусловленных межкомпонентным взаимодействием //Известия вузов. ПНД. 2019. Т. 27, вып. 3. С. 73-85. DOI: https://doi.org/10.18500/0869-6632-2019-27-3-73-85

Опубликована онлайн: 
20.06.2019
Язык публикации: 
русский
УДК: 
533:6, 533:9;519.688

Численное моделирование колебаний электрически заряженной гетерогенной среды, обусловленных межкомпонентным взаимодействием

Авторы: 
Тукмаков Дмитрий Алексеевич, ИММ - обособленное структурное подразделение ФИЦ КазНЦ РАН
Аннотация: 

Цель. Целью работы является численное исследование колебаний двухфазной среды (смеси газа и дисперсной фазы твёрдых частиц), вызванных электрическим зарядом дисперсного компонента и взаимообратным влиянием динамики газа и твёрдых частиц, а также влияние на динамические процессы в смеси линейного размера дисперсных частиц. Методы. С помощью численной модели электрически заряженной газовзвеси моделировались различные режимы колебательной динамики запылённой среды. Электрически заряженными предполагаются твёрдые частицы. В моделируемом процессе заряд всех частиц имеет одинаковый знак. Запылённая среда моделируется монодисперсной – все частицы имеют одинаковый размер, также предполагается, что все частицы состоят из материала с одинаковой плотностью и теплоёмкостью. Математическая модель предполагает скоростную и температурную неравновесность исследуемых процессов. Модель учитывает межфазный теплообмен, а также межфазное силовое взаимодействие, включающее в себя силу Стокса, силу присоединённых масс и динамическую силу Архимеда. Несущая среда – газ – предполагается вязкой, сжимаемой и теплопроводной. Система уравнений решается явным конечно-разностным методом Мак-Кормака второго порядка точности. Для получения монотонного решения применяется схема нелинейной коррекции сеточной функции. Результаты. Выявлено влияние размера частиц дисперсной фазы на скорость и частоту колебаний гетерогенной среды. Определена зависимость между размером частиц дисперсной фазы и интенсивностью перераспределения «средней плотности» частиц дисперсной фазы, а также определено влияние размера частиц на изменения давления в канале при колебательных движениях смеси.

DOI: 
10.18500/0869-6632-2019-27-3-73-85
Библиографический список: 

1. Нигматулин Р.И. Динамика многофазных сред. Ч. 1. М.: Наука, 1987. 464 с.
2. Кутушев А.Г. Математическое моделирование волновых процессов в аэродисперсных и порошкообразных средах. СПб.: Недра, 2003. 284 с.

3. Кисилев С.Г., Руев Г.А., Трунев А.П., Фомин В.Ф., Шавалиев М.Ш. Ударно-волновые процессы в двухкомпонентных и двухфазных средах. Новосибирск: Наука, 1992. 261 с.

4. Гельфанд Б.Е., Губанов А.В., Медведев Е.И., Цыганов С.А. Ударные волны при разлете сжатого объема газовзвеси твёрдых частиц // ДАН СССР. 1985. Т. 281, No 5. С. 1113–1116.

5. Козлов В.Е., Лебедев А.Б., Секундов А.Н., Якубовский К.Я. Моделирование скорости турбулентного гомогенного горения на основе «квазиламинарного» подхода // ТВТ. 2009. Т. 47, No 6. С. 946–953.

6. Рыжков И.И., Степанова И.В. Групповые свойства и точные решения модели вибрационной конвекции бинарной смеси // Прикладная механика и техническая физика. 2011, No 4. С. 72–83.
7. Zabelinskii I.E., Ibraguimova L.B., Shatalov O.P., Tunik U.V. Experimental study and numerical modeling of vibrational oxygen temperature profiles behind a strong shock wave front // Progress in Flight Physics. EUCASS book series: Advances in Aerospace Sciences. Moscow, 2011. P. 231–242.
8. Голуб В.В., Баженова Т.В., Бакланов Д.И., Иванов К.В., Кривокорытов М.С. Применение детонации водородовоздушной смеси в устройствах для безыгольной инъекции // Теплофизика высоких температур. 2013, No 1. С. 147–150.

9. Губайдуллин Д.А., Тукмаков Д.А. Исследование динамики двухкомпонентного газа с пространственно разделенными в начальный момент компонентами // Известия вузов. Проблемы энергетики. 2014. No 3-4. С. 38 – 43.

10. Садин Д.В. TVD-схема для жестких задач волновой динамики гетерогенных сред негиперболического неконсервативного типа // Журнал вычислительной математики и математической физики. 2016. Т. 56, No 12. С. 2098–2109.

11. Вараксин Ю.А., Протасов М.В., Яценко В.П. Анализ механизмов осаждения твердых частиц на стенки каналов // Теплофизика высоких температур. 2013, No 5. С. 738–746.

12. Клочков Б.Н., Рейман А.М. Нелинейные модели динамики кровоснабжения участка ткани// Изв. вузов. Прикладная нелинейная динамика. 2010. Т. 18, No 2. С. 131–141.

13. Глазунов А.А., Дьяченко Н.Н., Дьяченко Л.И. Численное исследование течения ультрадис-персных частиц оксида алюминия в сопле ракетного двигателя твердого топлива // Теплофизика и аэромеханика. 2013. Т. 20, No 1. С. 81–88.

14. Веревкин А.А., Циркунов Ю.М. Течение дисперсной примеси в сопле Лаваля и рабочей секции двухфазной гиперзвуковой ударной трубы // Прикладная механика и техническая физика. 2008. Т. 49, No 5 (291). С. 102–113.
15. Нигматулин Р.И., Губайдуллин Д.А., Тукмаков Д.А. Ударно-волновой разлет газовзвесей // Доклады академии наук. 2016. T. 466, No 4. C. 418–421.
16. Zhuoqing A., Jesse Z. Correlating the apparent viscosity with gas–solid suspension flow in straight pipelines // Powder Technology. 2019. Vol. 345. P. 346–351.

17. Hayakawa H., Takada S., Garzo V. Kinetic theory of shear thickening for a moderately dense gas-solid suspension: From discontinuous thickening to continuous thickening // Physical review – covering statistical, nonlinear, biological, and soft matter physics. https://doi.org/10.1103/PhysRevE.96.042903

18. Тукмаков А.Л., Тукмаков Д.А. Генерация акустических возмущений движущейся заряженной газовзвесью // Инженерно-физический журнал. 2018, Т. 91, No 5. С. 1–7.

19. Зинченко С.П., Толмачёв Г.Н. О накоплении продуктов распыления сегнетоэлектрической мишени в плазме тлеющего высокочастотного разряда // Прикладная физика. 2012, No 5. С. 53–56.
20. Дикалюк А.С., Суржиков С.Т. Численное моделирование разреженной пылевой плазмы в нормальном тлеющем разряде // Теплофизика высоких температур. 2012. Т. 50, No 5. C. 611–619.
21. Tadaa Y., Yoshioka S., Takimoto A., Hayashi Y. Heat transfer enhancement in a gas-solid suspension flow by applying electric field // International Journal of Heat and Mass Transfer. 2016. Vol. 93. P. 778–787.

Краткое содержание: