Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Образец для цитирования:

Кащенко И. С., Кащенко С. А. Динамика уравнения с двумя запаздываниями, моделирующего численность популяции //Известия вузов. ПНД. 2019. Т. 27, вып. 2. С. 21-38. DOI: https://doi.org/10.18500/0869-6632-2019-27-2-21-38

Опубликована онлайн: 
24.04.2019
Язык публикации: 
русский
УДК: 
517.9

Динамика уравнения с двумя запаздываниями, моделирующего численность популяции

Авторы: 
Кащенко Илья Сергеевич, Ярославский государственный университет имени П.Г.Демидова (ЯрГУ)
Кащенко Сергей Александрович, Ярославский государственный университет имени П.Г.Демидова (ЯрГУ)
Аннотация: 

Предмет исследования. В работе исследуется поведение решений логистического уравнения с двумя запаздываниями из некоторой окрестности состояния равновесия при большом значении коэффициента линейного роста. Такие задачи возникают при моделировании численности популяций с учетом возрастной структуры, в качестве модели численности насекомых и т.п. Новизна. Показано, что критические случаи, возникающие в задаче об устойчивости состояния равновесия, имеют бесконечную размерность: бесконечно большое число корней характеристического уравнения стремятся к мнимой оси. Кроме того, в ряде изученных ситуаций возникает дополнительное вырождение, существенно влияющее на структуру решений. Методы исследования. Для изучения поведения решений в близких к критическим случаям разработан асимптотический метод, с помощью которого были построены специальные нелинейные уравнения – квазинормальные формы, решения которых дают асимптотические приближения решений исходной задачи. Полученные результаты. Показано, что в критических случаях поведение решений исходной сингулярно возмущенной задачи определяется динамикой квазинормальной формы. Приведены асимптотические формулы, связывающие их решения. В качестве квазинормальной формы могут выступают комплексные параболические уравнения типа Гинзбурга–Ландау, а при некоторых вырождениях – уравнения с одним (возможно, большим) запаздыванием либо обобщенное уравнение Кортевега–де Фриза. Эти задачи либо не содержат малый параметр, либо зависят от него регулярно. Выводы. Изучено поведение решений сингулярно возмущенного логистического уравнения с двумя запаздываниями. Выделены критические случаи и исследованы бифуркации. Показано, что у изучаемой системы присутствуют такие динамические эффекты, как мультистабильность и гипермультистабильность, а также бесконечный процесс прямых и обратных бифуркаций при стремлении малого параметра к нулю.

Финансовая поддержка. Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта No 18-29-10043.

DOI: 
10.18500/0869-6632-2019-27-2-21-38
Краткое содержание: