Для цитирования:
Павлов А. Н. Исследование электрической активности мозга в рамках концепции координации ритмических процессов // Известия вузов. ПНД. 2024. Т. 32, вып. 4. С. 511-520. DOI: 10.18500/0869-6632-003116, EDN: HLSYLL
Исследование электрической активности мозга в рамках концепции координации ритмических процессов
Целью работы является изучение эффектов однодневной депривации сна с использованием представлений о координации между ритмами мозга как сложной сети.
Методом исследования является взаимный корреляционный анализ нестационарных процессов, представляющий собой расширение флуктуационного анализа на случай двух сигналов. Рассматриваются записи электрокортикограмм мышей в двух состояниях — до и после депривации сна.
В результате проведенных исследований установлены различия между функциональными состояниями, диагностика и количественное описание которых могут быть проведены с помощью локального показателя скейлинга.
Заключение. В проведенном исследовании проиллюстрированы дополнительные возможности анализа сложной динамики электрической активности головного мозга в рамках концепции координации ритмов.
- Ivanov PC, Amaral LAN, Goldberger AL, Stanley HE. Stochastic feedback and the regulation of biological rhythms. Europhysics Letters. 1998;43(4):363–368. DOI: 10.1209/epl/i1998-00366-3.
- Hausdorff JM, Ashkenazy Y, Peng C-K, Ivanov PC, Stanley HE, Goldberger AL. When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Physica A. 2001;302(1–4):138–147. DOI: 10.1016/s0378-4371(01)00460-5.
- Stankovski T, Ticcinelli V, McClintock PVE, Stefanovska A. Coupling functions in networks of oscillators. New Journal of Physics. 2015;17:035002. DOI: 10.1088/1367-2630/17/3/035002.
- Shashikumar SP, Li Q, Clifford GD, Nemati S. Multiscale network representation of physiological time series for early prediction of sepsis. Physiological Measurement. 2017;38(12):2235–2248. DOI: 10.1088/1361-6579/aa9772.
- Bashan A, Bartsch RP, Kantelhardt JW, Havlin S, Ivanov PC. Network physiology reveals relations between network topology and physiological function. Nature Communications. 2012;3:702. DOI: 10.1038/ncomms1705.
- Bartsch RP, Liu KKL, Bashan A, Ivanov PC. Network physiology: how organ systems dynamically interact. PLoS One. 2015;10(11):e0142143. DOI: 10.1371/journal.pone.0142143.
- Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Stanley HE. From 1/f-noise to multifractal cascades in heartbeat dynamics. Chaos. 2001;11(3):641–652.DOI: 10.1063/ 1.1395631.
- Hu K, Chen Z, Hilton MF, Stanley HE, Shea SA. Non-random fluctuations and multi-scale dynamics regulation of human activity. Physica A. 2004;337(1–2):307–318.DOI: 10.1016/j.physa. 2004.01.042.
- Smirnov DA. Quantification of causal couplings via dynamical effects: A unifying perspective. Physical Review E. 2014;90(6):062921.DOI: 10.1103/PhysRevE.90.062921.
- Sysoev IV, Ponomarenko VI, Prokhorov MD. Reconstruction of ensembles of nonlinear neurooscillators with sigmoid coupling function. Nonlinear Dynamics. 2019;95:2103–2116. DOI: 10.1007/ s11071-018-4679-y.
- Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences (PNAS). 2003; 100(19):11053–11058. DOI: 10.1073/pnas.1831638100.
- Gould IC, Nobre AC, Wyart V, Rushworth MF. Effects of decision variables and intraparietal stimulation on sensorimotor oscillatory activity in the human brain. Journal of Neuroscience. 2012;32(40):13805–13818.DOI: 10.1523/JNEUROSCI.2200-12.2012.
- Wyart V, De Gardelle V, Scholl J, Summerfield C. Rhythmic fluctuations in evidence accumulation during decision making in the human brain. Neuron. 2012;76(4):847–858. DOI: 10.1016/j.neuron. 2012.09.015.
- Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature 2006;444:610–613. DOI: 10.1038/nature05278.
- Miller KJ, Leuthardt EC, Schalk G, Rao RP, Anderson NR, Moran DW, Miller JW, Ojemann JG. Spectral changes in cortical surface potentials during motor movement. Journal of Neuroscience. 2007;27(9):2424–2432. DOI: 10.1523/JNEUROSCI.3886-06.2007.
- Rey HG, De Falco E, Ison MJ, Valentin A, Alarcon G, Selway R, Richardson MP, Quian Quiroga R. Encoding of long-term associations through neural unitization in the human medial temporal lobe. Nature Communications. 2018;9:4372. DOI: 10.1038/s41467-018-06870-2.
- Jones SR, Pinto DJ, Kaper TJ, Kopell N. Alpha-frequency rhythms desynchronize over long cortical distances: a modeling study. Journal of Computational Neuroscience. 2000;9:271–291. DOI: 10.1023/a:1026539805445.
- Pahor A, Jausovec N. Theta-gamma cross-frequency coupling relates to the level of human intelligence. Intelligence. 2014;46:283–290. DOI: 10.1016/j.intell.2014.06.007.
- Scheffer-Teixeira R, Tort AB. On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. eLife. 2016;5:e20515. DOI: 10.7554/eLife.20515.
- Vijayan S, Lepage KQ, Kopell NJ, Cash SS. Frontal beta-theta network during rem sleep. eLife. 2017;6:e18894. DOI: 10.7554/eLife.18894.
- Lin A, Liu KL, Bartsch RP, Ivanov PCh. Dynamic network interactions among distinct brain rhythms as a hallmark of physiologic state and function. Communications Biology. 2020;3:197. DOI: 10.1038/s42003-020-0878-4.
- Chen B, Ciria LF, Hu C, Ivanov PCh. Ensemble of coupling forms and networks among brain rhythms as function of states and cognition. Communications Biology. 2022;5:82. DOI: 10.1038/ s42003-022-03017-4.
- Pavlov AN, Dubrovskii AI, Pavlova ON, Semyachkina-Glushkovskaya OV. Effects of sleep deprivation on the brain electrical activity in mice. Applied Science. 2021;11(3):1182. DOI: 10.3390/ app11031182.
- Podobnik B, Stanley HE. Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Physical Review Letters. 2008;100(8):084102. DOI: 10.1103/ PhysRevLett.100.084102.
- Podobnik B, Grosse I, Horvatic D, Ilic S, Ivanov PCh, Stanley HE. Quantifying cross-correlations using local and global detrending approaches. The European Physical Journal B. 2009;71:243–250. DOI: 10.1140/epjb/e2009-00310-5.
- Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1):82–87. DOI: 10.1063/1.166141.
- Bryce RM, Sprague KB. Revisiting detrended fluctuation analysis. Scientific Reports. 2012;2:315. DOI: 10.1038/srep00315.
- Frolov NS, Grubov VV, Maksimenko VA, Luttjohann A, Makarov VV, Pavlov AN, Sitnikova E, Pisarchik AN, Kurths J, Hramov AE. Statistical properties and predictability of extreme epileptic events. Scientific Reports. 2019;9:7243. DOI: 10.1038/s41598-019-43619-3.
- Achariyar TM, Li B, Peng W, Verghese PB, Shi Y, McConnell E, Benraiss A, Kasper T,Song W, Takano T, Holtzman DM, Nedergaard M, Deane R. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Molecular Neurodegeneration. 2016;11:74. DOI: 10.1186/s13024-016-0138-8.
- Zhang J, Zhu Y, Zhan G, Fenik P, Panossian L, Wang MM, Reid S, Lai D, Davis JG, Baur JA, Veasey S. Extended wakefulness: compromised metabolics in and degeneration of locus ceruleus neurons. Journal of Neuroscience. 2014;34(12):4418–4431. DOI: 10.1523/JNEUROSCI.5025- 12.2014.
- Kent BA, Strittmatter SM, Nygaard HB. Sleep and EEG Power spectral analysis in three transgenic mouse models of Alzheimer’s disease: APP/PS1, 3xTgAD, and Tg2576. Journal of Alzheimer’s Disease Reports. 2018;64(4):1325–1336. DOI: 10.3233/JAD-180260.
- Gneiting T, Schlather M. Stochastic models that separate fractal dimension and the Hurst effect. SIAM review. 2004;46(2):269–282. DOI: 10.1137/S0036144501394387.
- Pavlov AN, Runnova AE, Maksimenko VA, Pavlova ON, Grishina DS, Hramov AE. Detrended fluctuation analysis of EEG patterns associated with real and imaginary arm movements. Physica A. 2018;509:777–782. DOI: 10.1016/j.physa.2018.06.096.
- Pavlov AN, Pitsik EN, Frolov NS, Badarin A, Pavlova ON, Hramov AE. Age-related distinctions in EEG signals during execution of motor tasks characterized in terms of long-range correlations. Sensors. 2020;20(20):5843. DOI: 10.3390/s20205843.
- Frolov NS, Maksimenko VA, Khramova MV, Pisarchik AN, Hramov AE. Dynamics of functional connectivity in multilayer cortical brain network during sensory information processing. The European Physical Journal Special Topics. 2019;228:2381–2389. DOI: 10.1140/epjst/e2019- 900077-7.
- Anand DV, Chung MK. Hodge Laplacian of brain networks. IEEE Transactions on Medical Imaging. 2023;42(5):1563–1573. DOI: 10.1109/TMI.2022.3233876.
- Chung MK, Das S, Ombao H. Dynamic topological data analysis of functional human brain networks. Foundations of Data Science. 2024;6(1):22–40. DOI: 10.3934/fods.2023013.
- Yadav Y, Elumalai P, Williams N, Jost J, Samal A. Discrete Ricci curvatures capture age-related changes in human brain functional connectivity networks. Frontiers in Aging Neuroscience. 2023;15:1120846. DOI: 10.3389/fnagi.2023.1120846.
- Pringle J. On the parallel between learning and evolution. Behaviour. 1951;3:174–215. DOI: 10. 1163/156853951X00269.
- Shao YH, Gu GF, Jiang ZQ, Zhou WX, Sornette D. Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series. Scientific Reports. 2012;2:835. DOI: 10.1038/srep00835.
- 823 просмотра