Для цитирования:
Слипушенко С. В., Тур А. В., Яновский В. В. Конкуренция перемежаемостей // Известия вузов. ПНД. 2008. Т. 16, вып. 4. С. 3-19. DOI: 10.18500/0869-6632-2008-16-4-3-19
Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 241)
Язык публикации:
русский
Рубрика:
Тип статьи:
Научная статья
УДК:
514.8; 517.938; 530.182
Конкуренция перемежаемостей
Авторы:
Слипушенко Сергей Васильевич, Институт монокристаллов НАН Украины
Тур Анатолий Валентинович, Исследовательский институт астрофизики и планетологии
Яновский Владимир Владимирович, Институт монокристаллов НАН Украины
Аннотация:
В работе изучены перемежаемые режимы в двупараметрическом семействе одномерных отображений при наличии нейтрально неустойчивой неподвижной точки на границе фазового пространства. Построена фазовая диаграмма в пространстве параметров, определяющая возможные сценарии перехода к хаосу с изменением параметров. Обнаружен необычный режим конкуренции перемежаемостей, изучены функции распределения длительности ламинарных фаз, показатель Ляпунова и топологическая энтропия этого семейства отображений.
Ключевые слова:
Список источников:
- Manneville P., Pomeau Y. Intermittency and Lorentz model // Phys. Lett. 1979. Vol. 75A. P. 1.
- Шустер Г. Детерминированный хаос: Введение. М.: Мир, 1988.
- Арнольд В.И. Геометрические методы обыкновенных дифференциальных уравнений. Ижевск: Ижевская республиканская типография, 2000, 400 с.
- Naydenov S.V., Tur A.V., Yanovsky A.V., Yanovsky V.V. New scenario to chaos transition in the mappings with discontinuities // Phys. Letters A. 2003. Vol. 320. P. 160
- Bauer M., Habip S., He D.R., and Martienssen W. New type of intermittency in discontinuous maps // Phys. Rev. Lett. 1992. Vol. 68. P. 1625.
- Hugo L.D., de Cavalcante S. and Rios Leite J.R. Logarithmic periodicities in the bifurcations of type-I intermittent chaos // Phys. Rev. Lett. 2004. Vol. 92. P. 254102.
- May R.M. Simple mathematical models with very complicated dynamics // Nature. 1976. Vol. 261. P. 459.
- Наймарк Ю.И., Ланда П.С. Стохастические и хаотические колебания. М.: Наука, 1987.
- Ben-Mizrache A., Procaccia I., Rosenberg N., Schmidt A., Schuster H.G. Real and apparent divergencies in low-frequency spectra of nonlinear dynamical systems // Physical Review A. 1985. Vol. 31. P. 1830.
- Берже П., Помо И., Видаль К. Порядок в хаосе. О детерминированном подходе к турбулентности. М.: Мир, 1991.
- Zolotarev V.M. One-dimensional stable distributions. Mathematical Monograph. American Mathematical Society, Providence, RI. 1986. Vol. 65.
- Кузнецов С.П. Детерминированный хаос. М.: Физматлит, 2001.
- Синай Я.Г. Стохастичность гладких динамических систем. Элементы теории КАМ, Современные проблемы математики. Фундаментальные направления. Т. 2. Динамические системы – 2. М.: ВИНИТИ, 1985. C. 115.
- Zaslavsky G.M., Edelman M. Weak mixing and anomalous kinetics along filamented surfaces // Chaos. 2001. Vol. 11, No 2. P. 295.
- Casati G., Prosen T. Mixing property of triangular billiards // Phys. Rev. Lett. 1999. Vol. 83. P. 4729.
- Collet P., Crutchfield J.P., Eckmann J.P. Computing the Topological Entropy of Maps // Math. Phys. 1983 Commun. Vol. 88. P. 257.
- Болотин Ю.Л., Тур А.В., Яновский В.В. Конструктивный хаос. Харьков: Институт монокристаллов, 2005.
Поступила в редакцию:
25.06.2007
Принята к публикации:
10.06.2008
Опубликована:
31.10.2008
Краткое содержание:
(загрузок: 102)
- 2068 просмотров