Для цитирования:
Кузнецов А. П., Кузнецов С. П., Седова Ю. В. О свойствах скейлинга при воздействии шума в отображении окружности с числом вращения, заданным золотым средним // Известия вузов. ПНД. 2005. Т. 13, вып. 6. С. 56-76. DOI: 10.18500/0869-6632-2005-13-5-56-76
О свойствах скейлинга при воздействии шума в отображении окружности с числом вращения, заданным золотым средним
В работе исследованы особенности скейлинга, связанные с влиянием аддитивного шума на критическое отображение окружности с числом вращения, равным золотому среднему. На основании ренормгруппового подхода Хэма и Грэхэма [1] получена улучшенная числовая оценка для константы скейлинга, ответственной за влияние шума γ = 2.3061852653. Уменьшение амплитуды шума на эту константу обеспечивает возможность наблюдения каждого следующего уровня фрактальной структуры, что отвечает увеличению характерного масштаба времени на фактор ( √ 5 + 1)/2. Представлены численные результаты, демонстрирующие наличие ожидаемого скейлинга на фазовых портретах аттрактора с шумом, графиках «чертовой лестницы» и ляпуновских картах.
- Hamm A., Graham R. Scaling for small random perturbations of golden critical circle maps // Phys. Rev. A. 1992. Vol. 46, No 10. P. 6323–6333.
- Шустер Г. Детерминированный хаос. Введение. М.: Мир, 1988.
- Кузнецов С.П. Динамический хаос. Курс лекций. М.: Физматлит, 2001.
- Анищенко В.С., Астахов В.В., Вадивасова Т.Е., Нейман А.Б., Стрелкова Г.И., Шиманский-Гайер Л. Нелинейные эффекты в хаотических и стохастических системах. Москва–Ижевск: Институт компьютерных исследований, 2003.
- Бутенин Н.В., Неймарк Ю.И., Фуфаев Н.Л. Введение в теорию нелинейных колебаний. М.: Наука, 1987.
- Glass L., Sun J. Periodic forcing of a limit cycle oscillator: Fixed points, Arnold tongues, and the global organization of bifurcations // Phys. Rev. E. 1994. Vol. 50. P. 5077–5084.
- Anishchenko V.S. Dynamical Chaos – Models and Experiments. Appearance, Routes and Structure of Chaos in Simple Dynamical Systems // World Scientific, Singapore, 1995.
- Bak P., Bohr T., Jensen M.H., Christiansen P.V. Josephson junctions and circle maps // Solid State Communications. 1984. Vol. 51, No 4. P. 231–234.
- Bohr T., Bak P., Jensen M.H. Transition to chaos by interaction of resonances in dissipative systems. II. Josephson junctions, charge-density waves, and standard maps // Phys. Rev. A. 1984. Vol. 30, No 4. P. 1970–1981.
- Alstrm P., Christiansen B., Hyldgaard P., Levinsen M.T., Rasmussen R. Scaling relations at the critical line and the period-doubling route for the sine map and the driven damped pendulum // Phys. Rev. A. 1986. Vol. 34, No 3. P. 2220–2233.
- Arnold V.I. Cardiac arrhythmias and circle mappings // Chaos. 1991. Vol. 1, No 1. P. 20–24.
- Glass L., Guevara M.R., Shrier A., Perez R. Bifurcation and chaos in a periodically stimulated cardiac oscillator // Physica D. 1983. Vol. 7. P. 89–101.
- Feigenbaum M.J., Kadanoff L.P., Shenker S.J. Quasiperiodicity in dissipative systems: A renormalization group analysis // Physica D. 1982. Vol. 5. P. 370–386.
- Ostlund S., Rand D., Sethna J., Siggia E.D. Universal properties of the transition from quasi-periodicity to chaos in dissipative systems // Physica D. 1983. Vol. 8. P. 303–342.
- Feigenbaum M.J. Quantitative universality for a class of nonlinear transformations // J. Stat. Phys. 1978. Vol. 19, No 1. P. 25–52.
- Feigenbaum M.J. The universal metric properties of nonlinear transformations // J. Stat. Phys. 1979. Vol. 21, No 6. P. 669–706.
- Feigenbaum M.J. Universal behavior in nonlinear systems // Physica D. 1983. Vol. 7, No 1-3. P. 16–39.
- Greene J.M., MacKay R.S., Vivaldi F., Feigenbaum M.J. Universal behaviour in families of area-preserving maps // Physica D. 1981. Vol. 3, No 3. P. 468–486.
- Вул Е.Б., Синай Я.Г., Ханин К.М. Универсальность Фейгенбаума и термодинамический формализм // УМН. 1984. Т. 39, No 3. C. 3–37.
- Mao J.-M., Greene J.M. Renormalization of period-doubling in symmetric four-dimensional volume-preserving maps//Phys. Rev. A.1987.Vol. 35, No 9. P. 3911–3917.
- Kuznetsov A.P., Kuznetsov S.P., Sataev I.R. A variety of period-doubling universality classes in multi-parameter analysis of transition to chaos // Physica D. 1997. Vol. 109. P. 91–112.
- Hu B., Rudnik J. Exact solution of the Feigenbaum renormalization group equations for intermittency // Phys. Rev. Lett. 1982. Vol. 48, No 24. P. 1645–1648.
- Hirsch J.E., Nauenberg M., Scalapino D.J. Intermittency in the presence of noise: A renormalization group formulation // Phys. Lett. A. 1982. Vol. 87. P. 391.
- MacKay R.S. A renormalization approach to invariant circles in area-preserving maps // Physica D. 1983. Vol. 7, No 1–3. P. 283–300.
- Wilbrink J. New fixed point of the renormalisation operator associated with the recurrence of invariant circles in generic Hamiltonian maps // Nonlinearity. 1990. Vol. 3. P. 567–584.
- Гольберг А.И., Синай Я.Г., Ханин К.М. Универсальные свойства для последовательностей бифуркаций утроения периода // УМН. 1983. Т. 38, No 1. C. 159–160.
- Cvitanovic P., Myrheim J. Universality for period n-tuplings in complex mappings // Phys. Lett. A. 1983. Vol. 94. P. 329.
- Isaeva O.B., Kuznetsov S.P. On scaling properties of two-dimensional maps near the accumulation point of the period-tripling cascade // Regular and Chaotic Dynamics. 2000. Vol. 5, No 4. P. 459–476.
- Кузнецов С.П. Универсальность и подобие в поведении связанных систем Фейгенбаума // Известия вузов. Радиофизика. 1985. Т. 28, No 8. C. 991–1007.
- Kook H., Ling F.H., Schmidt G. Universal behavior of coupled nonlinear systems // Phys. Rev. A. 1991. Vol. 43, No 6. P. 2700–2708.
- Kim S.-Y. Universality of period doubling in coupled maps // Phys. Rev. E. 1994. Vol. 49. P. 1745–1748.
- Stavans J., Heslot F., Libchaber A. Fixed winding number and the quasiperiodic route to chaos in a convective fluid//Phys.Rev. Lett. 1985. Vol. 55,No 6. P. 596–599.
- Jensen M. H., Kadanoff L. P., Libchaber A., Procaccia I., Stavans J. Glodal universality at the onset of chaos: Results of a forced Rayleigh – Benard experiment // Phys. Rev. Lett. 1985. Vol. 55, No 25. P. 2798–2801.
- Su Z., Rollins R.W., Hunt E.R. Measurements of f(?) spectra of attractors at transitions to chaos in driven diode resonator systems // Phys. Rev. A. 1987. Vol. 36, No 7. P. 3515–3517.
- Kajanto M.J., Salomaa M.M. Effects of external noise on the circle map and the transition to chaos in Josephson junctions // Solid State Communications. 1985. Vol. 53, No 1. P. 99–106.
- Crutchfield J.P., Nauenberg M., Rudnik J. Scaling for external noise at the onset of chaos // Phys. Rev. Lett. 1981. Vol. 46, No 14. P. 933–935.
- Shraiman B., Wayne C.E., Martin P.C. Scaling theory for noisy period-doubling transitions to chaos // Phys. Rev. Lett. 1981. Vol. 46, No 14. P. 935–939.
- Gyorgyi G., Tishby N. Scaling in stochastic Hamiltonian systems: A renormalization approach // Phys. Rev. Lett. 1987. Vol. 58, No 6. P. 527–530.
- Kapustina J.V., Kuznetsov A.P., Kuznetsov S.P., Mosekilde E. Scaling properties of bicritical dynamics in unidirectionally coupled period-doubling systems in presence of noise // Phys. Rev. E. 2001. Vol. 64. 066207 (12 pages).
- Gyorgyi G., Tishby N. Path integrals in Hamiltonian systems: breakup of the last Kolmogorov-Arnold-Moser torus due to random forces // Phys. Rev. Lett. 1989. Vol. 62. No 4. P. 353–356.
- Isaeva O.B., Kuznetsov S.P., Osbaldestin A.H. Effect of noise on the dynamics of a complex map at the period-tripling accumulation point // Phys. Rev. E. 2004. Vol. 69, 036216 (6 pages).
- Markosova M., Markos P. Numerical studies of the noisy sine circle map // Phys. Lett. A. 1989. Vol. 136, No 7, 8. P. 369–373.
- Dixon T.W., Gherghetta T., Kenny B.G. Universality in the quasiperiodic route to chaos // Chaos. 1996. Vol. 6, No 1. P. 32–42.
- De la Llave R., Petrov N.P. Regularity of conjugacies between critical circle maps: An experimental study // Experimental Mathematics. 2002. Vol. 11. P. 219–242.
- Rossler J., Kiwi M., Hess B., Marcus M. Modulated nonlinear processes and a novel mechanism to induce chaos // Phys. Rev. A. 1989. Vol. 39, No 11. P. 5954–5960.
- Marcus M., Hess B. Lyapunov exponents of the logistic map with periodic forcing // Computers and Graphics. 1989. Vol. 13, No 4. P. 553–558.
- Bastos de Figueireido J.C., Malta C.P. Lyapunov graph for two-parameter map: Application to the circle map // Int. J. of Bifurcation and Chaos. 1998. Vol. 8, No 2. P. 281–293.
- Kuznetsov A.P., Savin A.V. About the typical structures and chaos border in the parameter plane of non-autonomous discrete maps with period-doubling // Nonlinear Phenomena in Complex Systems. 2002. Vol. 5, No 3. P. 296–301.
- Fiel D. Scaling for period-doubling sequences with correlated noise // J. Phys. A: Math. Gen. 1987. Vol. 20. P. 3209–3217.
- Choi S.-Y., Lee E.K. Scaling behavior at the onset of chaos in the logistic map driven by colored noise // Phys. Lett. A. 1995. Vol. 205. P. 173–178.
- Ivankov N.Yu., Kuznetsov S.P. Complex periodic orbits, renormalization, and scaling for quasiperiodic golden-mean transition to chaos // Phys. Rev. E. 2001. Vol. 63. 046210 (10 pages).
- Crutchfield J.P., Farmer J.D., Huberman B.A. Fluctuations and simple chaotic dynamics // Phys. Rep. 1982. Vol. 92, No 2. P. 45–82.
- Jensen M.H., Bak P., Bohr T. Transition to chaos by interaction of resonances in dissipative systems. I. Circle maps // Phys. Rev. A. 1984. Vol. 30, No 4. P. 1960–1969.
- Alstrm P., Levinsen M.T., Rasmussen D.R. Scaling exponents, relations, and order dependence for circle maps // Physica D. 1987. Vol. 26. P. 336–346.
- 1852 просмотра