Для цитирования:
Баханова Ю. В., Казаков А. О., Каратецкая Е. Ю., Козлов А. Д., Сафонов К. А. О гомоклинических аттракторах трехмерных потоков // Известия вузов. ПНД. 2020. Т. 28, вып. 3. С. 231-258. DOI: 10.18500/0869-6632-2020-28-3-231-258
О гомоклинических аттракторах трехмерных потоков
Основной целью работы является построение классификации гомоклинических аттракторов трехмерных динамических систем с непрерывным временем и выделение среди них классов псевдогиперболических аттракторов, хаотическая динамика которых сохраняется при возмущениях системы. Основным методом исследования является качественный метод карты седел, заключающийся в построении расширенной бифуркационной диаграммы на плоскости параметров системы вида $\dot x=y+g_1(x,y,z), \dot y=z+g_2(x,y,z), \dot z=Ax+By+Cz+g_3(x,y,z), \;\; g_i(0,0,0) = (g_i)^\prime_x(0,0,0) = (g_i)^\prime_y(0,0,0) = (g_i)^\prime_z(0,0,0) = 0, \; i = 1, 2, 3$, матрица линеаризации которой представляется в форме Фробениуса, а собственные числа, определяющие тип состояния равновесия, выражаются только лишь через коэффициенты A, B, C. Для проверки псевдогиперболичности рассматриваемых аттракторов применяется численный метод анализа непрерывности подпространства равномерного сжатия и подпространства растяжения объемов на аттракторе. Принадлежность аттракторов к классу гомоклинических устанавливается с помощью численного метода расчета расстояния от аттрактора до седлового состояния равновесия. Результаты. На плоскости параметров (A,B) построена расширенная бифуркационная диаграмма, на которой выделена область устойчивости состояния равновесия, а также шесть областей, отвечающих двум различным типам спиральных восьмерочных аттракторов, аттрактору Шильникова, аттрактору Лоренца, седловому аттрактору Шильникова и аттрактору типа Любимова–Закса–Ровеллы. Численно установлена псевдогиперболичность аттрактора Лоренца. Для аттракторов Любимова–Закса–Ровеллы установлена непрерывность подпространств сжатия и растяжения объемов. Тем не менее показано, что такие аттракторы не могут быть псевдогиперболическими. В работе обсуждается, что в трехмерных потоках помимо аттракторов Лоренца псевдогиперболическими могут быть еще только лишь седловые аттракторы Шильникова, содержащие седловое состояние равновесия с двумерным неустойчивым многообразием. Однако примеры таких аттракторов на данный момент не известны.
- Тураев Д.В., Шильников Л.П. Пример дикого странного аттрактора // Матем. сб. 1998. Т. 189. C. 137–160.
- Gonchenko A.S., Gonchenko S.V. Variety of strange pseudohyperbolic attractors in three-dimensional generalized Henon maps // Physica D: Nonlinear Phenomena, 2016. Vol. 337. P. 43–57.
- Афраймович В.С., Быков В.В., Шильников Л.П. О возникновении и структуре аттрактора Лоренца // Доклады Академии наук СССР. 1977. Т. 234, № 2. С. 336–339.
- Афраймович В.С., Быков В.В., Шильников Л.П. О притягивающих негрубых предельных множествах типа аттрактора Лоренца // Труды ММО, 1982. Т. 44. С. 150–212.
- Hayashi S. Hyperbolicity, stability, and the creation of homoclinic points // Documenta Mathematica, Extra Volume ICM, 1998. T. 2. C. 789–796.
- Шильников Л.П. Теория бифуркаций и турбулентность. Методы качественной теории дифференциальных уравнений: Межвуз. сб. Горький: ГГУ. 1986. С. 150–163.
- Gonchenko S.V., Turaev D.V., Gaspard P. and Nicolis G. Complexity in the bifurcation structure of homoclinic loops to a saddle-focus // Nonlinearity, 1997. Vol. 10, no. 2. P. 409.
- Шильников Л.П. Некоторые случаи рождения периодических движений в n-мерном пространстве // Докл. АН СССР. 1962. Vol. 143, № 2. P. 289–292
- Шильников Л.П. О рождении периодических движений в n-мерном пространстве // Мат. сб. 1963, № 4. С. 443–466
- Lorenz E. Deterministic nonperiodic flow // Journal of the Atmospheric Sciences. 1963. Vol. 20, no. 2. P. 130–141.
- Шильников А.Л. Бифуркации и хаос в системе Мориока–Шимицу // Межвуз. сб. Методы КТДУ. Горький, 1986. C. 180–183.
- Shilnikov A.L. On bifurcations of the Lorenz attractor in the Shimuizu–Morioka model // Physica D. 1993. Vol. 62. P. 338–346.
- Chua L.O., Komuro M., Matsumoto T. The double scroll family // IEEE Transactions on Circuits and Systems. 1986. Vol. 33, no. 11. P. 1072–1118.
- Rossler O.E. ¨ An equation for continuous chaos // Physics Letters A. 1976. Vol. 57, № 5. P. 397–398.
- Gavrilov N.K., Shilnikov L.P. On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. Part 1 // Math. USSR Sb. 1972. Vol. 17, no. 4. P. 467–485.
- Gavrilov N.K., Shilnikov L.P. On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. Part 2 // Math. USSR Sb. 1973. Vol. 19, no. 1. P. 139–156.
- Aframovich V.S., Shilnikov L.P. Strange Attractors and Quasiattractors. Nonlinear Dynamics and Turbulence, G.I. Barenblatt, G. Iooss, D.D. Joseph (Eds.). Boston: Pitmen, 1983.
- Gonchenko S.V., Shilnikov L.P., Turaev D.V. Quasiattractors and homoclinic tangencies // Computers and Mathematics with Applications. 1997. Vol. 34, no. 2–4. P. 195–227.
- Шильников Л.П. Об одном случае существования счетного множества периодических движений // ДАН СССР. 1965. Т. 160, № 3. С. 558–561.
- Гонченко А.С., Гонченко С.В., Казаков А.О., Козлов А.Д. Математическая теория динамического хаоса и её приложения: Обзор. Часть 1. Псевдогиперболические аттракторы // Известия вузов. ПНД. 2017. Т. 25, № 2. С. 4–36.
- Gonchenko A.S., Gonchenko S.V., Kazakov A.O., Kozlov A.D. Elements of Contemporary Theory of Dynamical Chaos: A Tutorial. Part I Pseudohyperbolic Attractors // International Journal of Bifurcation and Chaos. 2018. Vol. 28, no. 11. P. 291–314
- Кузнецов С.П. Динамический хаос и гиперболические аттракторы: От математики к физике. 2013.
- Кузнецов С.П. Динамический хаос и однородно гиперболические аттракторы: От математики к физике // Успехи физических наук. 2011. Т. 181, № 2. С. 121–149.
- Grines V.Z., Zhuzhoma E.V., Pochinka O.V. Rough diffeomorphisms with basic sets of codimension one // Journal of Mathematical Sciences. 2017. Vol. 225. P. 195–219.
- Kuznetsov S.P. Example of a physical system with a hyperbolic attractor of the Smale–Williams type // Physical Review Letters. 2005. Т. 95, no. 14. 144101.
- Кузнецов C.П., Селезнев Е.П. Хаотическая динамика в физической системе со странным аттрактором типа Смейла–Вильямса // ЖЭТФ. 2006. Т. 129, № 2. С. 400-412.
- Kuznetsov S.P., Pikovsky A. Autonomous coupled oscillators with hyperbolic strange attractors // Physica D: Nonlinear Phenomena. 2007. Т. 232, no. 2. С. 87–102
- Кузнецов С.П. Гиперболические странные аттракторы систем, допускающих физическую реализацию // Известия вузов. ПНД. 2009. T. 17, № 4. С. 5–34.
- Kruglov V.P., Kuznetsov S.P. An autonomous system with attractor of Smale–Williams type with resonance transfer of excitation in a ring array of van der Pol oscillators // Communications in Nonlinear Science and Numerical Simulation. 2011. Vol. 16. P. 3219–3223.
- Jalnine A.Yu. Hyperbolic and non-hyperbolic chaos in a pair of coupled alternately excited FitzHughNagumo systems // Communications in Nonlinear Science and Numerical Simulation. 2015. Vol. 23, no. 1–3. P. 202–208.
- Kuznetsov S.P., Sataev I.R. Hyperbolic attractor in a system of coupled non-autonomous van der Pol oscillators: Numerical test for expanding and contracting cones // Physics Letters. 2007. Vol. A365. P. 97–104.
- Kuptsov P.V. Fast numerical test of hyperbolic chaos // Phys. Rev. E. 2012. Vol. 85. 015203(R).
- Круглов В.П. Методика и результаты численной проверки гиперболической природы аттракторов для редуцированных моделей распределенных систем // Известия вузов. ПНД. 2014. Т. 22, № 6. P. 79–93.
- Kuznetsov S.P., Kruglov V.P. Verification of hyperbolicity for attractors of some mechanical systems with chaotic dynamics // Regular and Chaotic Dynamics. 2016. Vol. 21, no. 2. P. 160–174.
- Kuptsov P.V., Kuznetsov S.P. Numerical test for hyperbolicity in chaotic systems with multiple time delays // Communications in Nonlinear Science and Numerical Simulation. 2018. Vol. 56. P. 227–239.
- Шильников Л.П.. Теория бифуркаций и модель Лоренца // В кн.: Бифуркации рождения цикла и ее приложения / Под ред. Дж. Марсден, М. Мак-Кракен. М.: Мир, 1980. С. 317–335.
- Tucker W. The Lorenz attractor exists // Comptes Rendus de l’Academie des Sciences-Series ´ I-Mathematics. 1999. Vol. 328, no. 12. P. 1197–1202.
- Gonchenko S.V., Kazakov A.O., Turaev D. Wild pseudohyperbolic attractors in a four-dimensional Lorenz system // arXiv preprint arXiv:1809.07250. 2018.
- Kuptsov P.V., Kuznetsov S.P. Lyapunov analysis of strange pseudohyperbolic attractors: Angles between tangent subspaces, local volume expansion and contraction // Regular and Chaotic Dynamics. 2018. Vol. 23, no. 7–8. P. 908–932
- Shilnikov A.L., Shilnikov L.P. On the nonsymmetrical Lorenz model // International Journal of Bifurcation and Chaos. 1991. Vol. 1, no. 4. P. 773–776.
- Казаков А.О., Козлов А.Д. Несимметричный аттрактор Лоренца как пример нового псевдогиперболического аттрактора в трехмерных системах // Журнал Средневолжского математического общества. 2018. Vol. 20, № 2. P. 187–198
- Шильников Л.П., Шильников А.Л., Тураев Д.В., Чуа Л. Методы качественной теории в нелинейной динамике. М.; Ижевск: Институт компьютерных исследований; Часть 2, 2009. 546 с.
- Гонченко А.С., Гонченко С.В., Шильников Л.П. К вопросу о сценариях возникновения хаоса у трехмерных отображений // Нелинейная динамика. 2012. Т. 8, № 1. С. 3–28.
- Gonchenko A., Gonchenko S., Kazakov A., Turaev D. Simple scenarios of onset of chaos in three-dimensional maps // International Journal of Bifurcation and Chaos. 2014. Vol. 24, № 8. P. 1440005.
- Гонченко А.С., Козлов А.Д. О сценариях возникновения хаоса в трехмерных неориентируемых отображениях // Журнал Средневолжского математического общества. 2016. Vol. 18, № 4. P. 17–29.
- Козлов А.Д. Примеры странных аттракторов в трехмерных неориентируемых отображениях // Журнал Средневолжского математического общества. 2017. Vol. 19, № 2. P. 62–75.
- Гантмахер Ф.Р. Теория матриц. Москва: Издательство «Наука», 1966.
- Guckenheimer J., Holmes P. Local bifurcations. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York, 1983. P. 117–165.
- Lyubimov D.V., Zaks M.A. Two mechanisms of the transition to chaos in finite-dimensional models of convection // Physica D: Nonlinear Phenomena. 1983. Vol. 9, no. 1–2. P. 52–64.
- Rovella A. The dynamics of perturbations of the contracting Lorenz attractor // Boletim da Sociedade Brasileira de Matematica-Bulletin/Brazilian Mathematical Society. 1993. Vol. 24, ´ no. 2. P. 233–259.
- Овсянников И.М., Шильников Л.П. О системах с гомоклинической кривой седло-фокуса // Математический сборник. 1986. Т. 130, № 4. С. 552–570.
- Coullet P., Tresser C., Arneodo A. Transition to stochasticity for a class of forced oscillators // Physics letters A. 1979. Vol. 72, no. 4-5. P. 268–270.
- Coullet P., Tresser C., Arneodo A. Possible new strange attractors with spiral structure // Communications in Mathematical Physics. 1981. Vol. 79, no. 4. P. 573–579.
- Arneodo A., Coullet P., Tresser C. Oscillators with chaotic behavior: An illustration of a theorem by Shilnikov // Journal of Statistical Physics. 1982. Vol. 27, no. 1. P. 171–182.
- Kuznetsov Y.A., De Feo O., Rinaldi S. Belyakov homoclinic bifurcations in a tritrophic food chain model // SIAM Journal on Applied Mathematics. 2001. Vol. 62, no. 2. P. 462–487.
- Hastings A., Powell T. Chaos in a three-species food chain // Ecology. 1991. Vol. 72, no. 3. P. 896–903.
- Rai V., Sreenivasan R. Period-doubling bifurcations leading to chaos in a model food chain // Ecological modelling. 1993. Vol. 69, no. 1–2. P. 63–77.
- Kuznetsov Y.A., Rinaldi S. Remarks on food chain dynamics // Mathematical biosciences. 1996, vol. 134, no. 1. P. 1–33.
- Deng B., Hines G. Food chain chaos due to Shilnikov’s orbit // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2002. Vol. 12, no. 3. P. 533–538.
- Bakhanova Y.V., Kazakov, A.O., Korotkov A.G., Levanova T.A., Osipov G.V. Spiral attractors as the root of a new type of «bursting activity» in the Rosenzweig–MacArthur model // The European Physical Journal Special Topics. 2018. Vol. 227, no. 7–9. P. 959–970.
- Беляков Л.А. Бифуркации систем с гомоклинической кривой седло-фокуса с нулевой седловой величиной // Математические заметки. 1984. Т. 36, № 5. С. 681–689.
- Barrio R., Blesa F., Serrano S., Shilnikov A. Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci // Physical Review E. 2011. Vol. 84, no. 3. 035201.
- Гонченко С.В., Тураев Д.В., Шильников Л.П. Динамические явления в многомерных системах с негрубой гомоклинической кривой Пуанкаре // Докл. Росс. Акад. Наук. 1993. Т. 330, № 2. C. 144–147.
- Гонченко С.В., Тураев Д.В., Шильников Л.П.. О существовании областей Ньюхауса вблизи систем с негрубой гомоклинической кривой Пуанкаре (многомерный случай) // Докл. РАН. 1993. Т. 329, № 4. С. 404–407.
- 2241 просмотр