ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Trubetskov D. I., Vdovina G. M. About current state high frequency vacuum electronic and microelectronic devices with field emission. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 1, pp. 35-66. DOI: 10.18500/0869-6632-2013-21-1-35-66

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 565)
Language: 
Russian
Article type: 
Review
UDC: 
621.385.6

About current state high frequency vacuum electronic and microelectronic devices with field emission

Autors: 
Trubetskov Dmitriy Ivanovich, Saratov State University
Vdovina Galina Mihajlovna, Saratov State University
Abstract: 

Some results of researches and development of devices with field emission (TWT, BWO, carcinotrode, klystrons and X-ray tubes, field emission displays, etc.) have been briefly presented in the article. Lines of development of its theory have been designated. Also the vacuum microwave electronics programs offered in Europe and USA have been considered. They are directed on using new technologies in coping with the terahertz frequency range, reflecting the trend of recent years.

Reference: 
  1. Trubetskov DI, Rozhnev AG, Sokolov DV. Lectures on ultrahigh-frequency vacuum microelectronics. Saratov: SEI ESC «Kolledg», 1996. 238 p. (In Russian).
  2. Tatarenko NI, Kravchenko VF. Autoemission nanostructures and devices based on them. Moscow: Fizmatlit; 2006. 195 p. (In Russian).
  3. Dyachkov PN. Carbon nanotubes: structure, properties, applications. Moscow: BINOM; 2006. (In Russian).
  4. Spindt CA, Brodie L, Humphrey L, Westerberg ER. Physical properties of thinfilm field emission cathodes with molybdenum cones. J. of Appl. Physics. 1976;47(12):5248–5263. DOI:10.1063/1.322600
  5. Lockwood NP, Cartwright KL, d’Aubigny CY. et.al. Development of field emission cathodes, electron gun and a slow wave structure for a terahertz travelling wave tube. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2010. p. 25. DOI: 10.1109/IVELEC.2010.5503622
  6. Sheshin EP. Surface structure and autoemission properties of carbon materials. Moscow: Fizmatkniga; 2001. 287 p. (In Russian).
  7. Vikulov I. USA microwave vacuum electronics program HiFIVE. Electronics: STB. 2008;5:70–75.
  8. Vikulov I. Acuum microwave electronics in accordance with IVEC 2009 MATERIALS. Electronics: STB. 2010;4:62–73.
  9. Whaley DR, Duggal R, Armstrong CM. et al. Operation of a low-voltage high-transconductance field emitter array TWT. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2008. p. 78. 10.1109/PLASMA.2008.4590952
  10. Whaley DR, Duggal R, Armstrong CM. et al. 100 W operation of a cold cathode TWT. IEEE Trans. Plasma Sci. 2009;56(5):896–905. DOI:10.1109/TED.2009.2015614
  11. Dayton JA, Kory CL, Mearini GT. Backward wave oscillator development at 300 and 650 GHz. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. p. 423. DOI: 10.1109/IVELEC.2006.1666363
  12. Dayton JA, Mearini GT, Kory CL, Bower CA. Fabrication of diamond-based 300 and 650 GHz BWOs. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2007. p. 1. DOI: 10.1109/IVELEC.2007.4283297
  13. Paoloni C, Carlo AD, Brunetti F. et.al. Design and Fabrication of a 1 THz Backward Wave Amplifier. Terahertz Science and Technology. 2011;4(4):149–163.
  14. Guzilov I, Konnov A, Kuzmich K. et.al. Multi Beam S-band Klystron with the field emitter. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2009. p. 366. DOI: 10.1109/IVELEC.2009.5193542
  15. Krasnova GM. On two-dimensional linear theory of interaction between electron beam and traveling electromagnetic wave: allowing for influence of space charge in a thin beam model. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(5):148-159. DOI: 10.18500/0869-6632-2010-18-5-148-159
  16. Krasnova GM. Interaction of space-charge waves in an electron beam with electro-magnetic waves in a longitudinal magnetic field. Physics of Wave Phenomena. 2011;19(4):290–300. DOI:10.3103/S1541308X11040091
  17. Kyhl RL, Webster HF. Break of Hollow Cylindrical Electron Beams. IRE Trans. Electron Devices ED-3. 1956;3(4):172–183. DOI: 10.1109/T-ED.1956.14185
  18. Cutler CC. Instability in hollow and strip electron beams. Jour. of Applied Physics. 1956;27(9):1028–1029. DOI:10.1063/1.1722535
  19. Shevchik VN, Trubetskov DI. Analytical methods of calculation in microwave electronics. Moscow: Sovetskoe radio, 1970. 584 p. (In Russian).
  20. Shiffler D, Nation JA, Kerslick GS. A high-power, TWT amplifier. IEEE Trans. on Pl. Sci. 1990;18(3):546–552. DOI:10.1109/27.55926
  21. Imura H, Tsuida S, Takahasi M. et al. Electron gun design for TWT using a field emitter array cathode. Electron Devices Meeting. 1997:721–734. DOI:10.1109/IEDM.1997.650484
  22. Whaley DR, Gannon BM, Smith CR, Armstrong CM, Spindt CA. Application of field emitter arrays to microwave power amplifiers. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2000. DOI:10.1109/OVE:EC.2000.847464
  23. Whaley DR, Gannon BM, Smith CR, Armstrong CM, Spindt CA. Application of field emitter arrays to microwave power amplifiers. IEEE Trans. Plasma Sci. 2000;28(3):727–747. DOI:10.1109/27.887712
  24. Whaley DR, Gannon BM, Heinen VO. et al. Experimential demonstration of an emission-gated TWT amplifier. IEEE Trans. Plasma Sci. 2002;30(3):998–1008. DOI:10.1109/TPS.2002.801527
  25. Vikulov I. POWER MICROWAVES MODULS. VACUUM AND SOLID-STATE DCCTRONICS HYBRID. Electronics: STB. 2007;7:69–71.
  26. Li X, Bai G, Ding M. et al. Field emitter array electron gun for travelling wave tubes. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. p. 507. DOI:10.1109/IVELEC.2006.1666405
  27. Legagneux P., Le Sech N., Guiset P., et. al. Carbon nanotube based cathodes for microwave amplifiers (Keynote Presenation). IEEE International Vacuum Electronics Conference Proceedings, IVEC 2009. p. 80. DOI:10.1109/IVELEC.2009.5193378
  28. Andre F, Ponard P, Rozier Y. et al. TWT and X-Ray devices based on carbon nanotubes. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2010. p. 83. DOI: 10.1109/IVELEC.2010.5503591
  29. Gurinovich AB, Kuraev AA, Sinitsyn AK. Research of optimal variants of LBV with cathodic modulation. 9Th Int. Crimean Conference “Microwave&Telecommunication Technology” (CriMiCo’1999). Crimea,Ukraine. 1999. p.127.
  30. Gourinovitch AB, Kurayev AA, Popkova TL, Sinitsyn AK. Optimized TWT with cathode modulation. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2000. DOI:10.1109/OVE:EC.2000.847444
  31. Petrosyan AI, Rogovin VI. THE SIMULATION OF TWTO ELECTRON-OPTICAL SYSTEMS WITH FIELD EMISSION. Plasma Physics Reports. 2008;2:83–88.
  32. Dayton JA, Mearini GT, Kory CL. et al. Assembly and preliminary testing of the prototype 650 GHz BWO. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2008. p. 394. DOI:10.1109/IVELEC.2008.4556365
  33. Baik C-W, Son Y-M, Kim SI. et al. Microfabricated coupled-cavity backward-wave oscillator for terahertz imaging. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2008. 398–399 p. DOI:10.1109/IVELEC.2008.4556367
  34. Jeon SG, Shin YM, Kim JI. et al. Photonic Crystal Reflex Klystron using Field Emission Cathode. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2004. 120–121 p. DOI: 10.1109/IVNC.2004.1354929
  35. Park G-S, Jang KH, Jeong SG. et. al. Experimental investigation on high-order-mode photonic crystal reflex klystron using Spindt-type cathodes. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. 189–190 p. DOI:10.1109/IVELEC.2006.1666248
  36. Rozhnev AG, Ryskin NM, Sokolov DV, Trubetskov DI, Han ST, Kim JI, Park GS. Novel concepts of vacuum microelectronic microwave devices with field emitter cathode arrays. Physics of Plasmas. 2002;9(9):4020–4027. DOI: 10.1063/1.1497684
  37. Solntsev VA. Karsinotrode. Patent for the Invention № 2121194RU2121194С1 from 27.10.98; 6 p.
  38. Solntsev VA. Nonlinear phenomena in vacuum microelectronic structures. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(1):70–72.
  39. Solntsev VA. Nonlinear analysis of a carcinotrode: a BWO with an automodulation of the cathode emission. Jour. of Communications Technology and Electronics. 2000;45(1):S39—S45.
  40. Solntsev VA, Koltunov RP, Melikhov VO. Studying characteristics of a backward-wave tube with self-modulated emission. Journal of Communications Technology and Electronics. 2005;50(4):448-455.
  41. Koltunov R, Melikhov V, Solntsev V. Frequency properties of BWO with emission automodulation. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2005. p. 203.
  42. Melikhov VO, Nazarova MV, Solntsev VA. Simulation of nonstationary processes in backward-wave tube with the self-modulation of emission (Carcinotrode). Journal of Communications Technology and Electronics. 2009;54(12):1403–1412. DOI: 10.1134/S1064226909120109.
  43. Nazarova MV, Solntsev VA, Melikhov VO. Electron grouping in optimal mode of karsinotrode. Journal of Communications Technology and Electronics. 2011;56(4):511–513.
  44. Trubetskov DI, Hramov AE. Lectures on ultra-high frequency electronics for physicists. V. 1. Moscow: Fizmatlit; 2003. 496 p. (In Russian).
  45. Kuraev AA, Kukashevich DV, Sinitsyn AK, Sokol VA. Generation of electromagnetic waves in diode structures with autoemission cathodes. 9Th Int. Crimean Conference “Microwave&Telecommunication Technology” (CriMiCo’1999). Crimea,Ukraine. 1999. p.133.
  46. Kurayev AA, Lukashevich DV, Sinitsyn AK. Modeling of Diode Oscillators with Field-Emission Cathodes. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2000. DOI:10.1109/OVE:EC.2000.847445
  47. Bower C, Shalom D, Zhu W. et al. Micromachined Vacuum Triode Using a Carbon Nanotube Cold Cathode. IEEE Trans. Electron Devices. 2002;49(8):1478–1483. DOI:10.1109/TED.2002.801247
  48. Holloway B, Zhu M, Zhao X. et al. Milliamp-Class Back-Gated Triode Field Emission Devices Based on Free-Standing Two-Dimensional Carbon Nanostructures. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. p. 517. DOI:10.1109/IVELEC.2006.1666410
  49. Tyler T, Shenderova O, Ray M. et al. Buried-line back-gated triode field emission devices. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. p. 519. DOI: 10.1109/IVELEC.2006.1666411
  50. Milne WI, Teoa KB. et al. Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J. Vac. Sci. Technol. 2006;24(1):345–348. DOI:10.1116/1.2161223
  51. Riccitelli R, Brunetti F, Petrolati E. et al. Innovative design of nano-vacuum triode. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2007. p. 1. DOI:10.1109/IVELEC.2007.4283346
  52. Riccitelli R, Brunetti F, Paoloni C. et al. Field-emission vacuum triode: THz waveguide solutions for the transmission lines. IEEE International Vacuum Electro-nics Conference Proceedings, IVEC 2008. p. 382. DOI:10.1109/IVELEC.2008.4556544
  53. Benedik AI. Numerical simulation of the field emission diode oscillator with photonic crystal resonator. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(2):63-71. DOI: 10.18500/0869-6632-2012-20-2-63-71
  54. Benedik AI, Ryskin NM, Han S-T. Simulation of the field emission diod oscillator with photonic crystal resonator. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. 379–380 p. DOI:10.1109/IVEC.2012.6262202
  55. Lei W, Zhang X, Wang B. Field emission display with printable planar triode. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. p. 555. DOI:10.1109/IVESC.2012.6264208
  56. Zheng L, Zhu Z, Lei W. et al. Enhanced field emission density current of a planar triode structure with double cathodes. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. p. 377. DOI:10.1109/IVESC.2012.6264193
  57. Terranova ML, Orlanducci S, Tamburri E. et.al. Cold cathodes assembled by microsized cnt systems. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2009. p. 415. DOI:10.1109/IVELEC.2009.5193585
  58. Cheng Y, Zhou O. Electron field emission from carbon nanotubes. C.R. Physique. 2003;4(9):1021–1033. DOI:10.1016/S1631-0705(03)00103-8
  59. Modi A, Koratkar N, Lass E. et al. Miniaturized gas ionization sensors using carbon nanotubes. Nature (London). 2003;424(6945):171–174. DOI:10.1038/nature01777
  60. Espinosa RJ, McKenzie C, Munson M. et.al. X-ray tubes incorporating CNT cathodes. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2004. p. 253. DOI:10.1109/IVELEC.2004.1316300
  61. Maslennikov OY, Stanislavchik KV. et.al. Small-sized X-ray tube with the field electron emitter on the base of CNT. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. p. 513. DOI:10.1109/IVELEC.2006.1666408
  62. Schwoebel P, Holland CE, Spindt CA. Field emission arrays for tomographic medical X-ray imaging. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. p. 511.
  63. Guzilov I, Kuzmich K, Maslennikov O. et.al. Multi beam X-ray tube with field emitter on the base of nanocrystalline graphite for computer tomography. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2009. p. 289. DOI:10.1109/IVELEC.2009.5193411
  64. Jeong J-W, Kim J-W, Choi S, Kang J-T, Song Y-H. The Vacuum-sealed microfocus X-ray tube with CNT field emitters. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. p. 93.
  65. Kim J-W, Kang J-T, Jeong J-W, Choi S, Kim D-O, Song Y-H. The design and fabrication of CNT field emitters for a vacuum-sealed X-ray tube. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. p. 103.
  66. Kim JM, Hong JP, Kim JW, Choi JH, Park NS, Kang JH, Jang JE, Ryu YS, Yang HC, Gorfinkel BI, Roussina EV. Reliability analysis of 4 in. fieldemission display. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. 1997;15(2):528–532. DOI 10.1116/1.589286.
  67. Temple D. Recent progress in field emitter array development for high performance applications. Materials Science and Engineering. 1999;R24(5):185–239. DOI:10.1016/s0927-796x(98)00014-x.
  68. Choi WB, Chung DS, Kang JH. et al. Fully sealed, high-brightness carbonnanotube field-emission display. Appl. Phys. Lett. 1999;75(20):3129–3131. DOI:10.1063/1.125253
  69. Gorfinkel BI, Mironov BN, Mikhailova VV, Finkelstein SH, Khazanov AA, Zelepukin AV. Patent for the invention RU2174268C2
  70. http://www.ire.krgtu.ru/subdivision/pc/data/tecnol.htm
  71. Budzialovsky VV, Zasemkov Sun. Patent for the invention RU2174266C2.
  72. Gorfinkel BI, Abanshin NP, Hou VX, Krusos DA, Naar C, Kastalsky A, Schohor C. Patent for the invention of RU2217837C2.
  73. Itoh S. et al. Development of field emission display. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. 2004;22(3):1362–1366. DOI:10.1116/1.1691409.
  74. Sakurada K. et al. Development of high resolution Spindt-type FED. IDW06, 2006. p. 1805.
  75. Itoh S. et al. Development of field emission display (FEDs). J. of Vac. Sci. Technol. Microelectronics and Nanometer Structures. 2006;24(6):1821.
  76. Mimura H. The status of field emission displays. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2007. p. 1. DOI:10.1109/IVELEC.2007.4283192
  77. Abanshin NP, Yakunin AN, Gorfinkel BI. Questions of development of durable flat graphic indicators on the basis of planar-edge auto-emissive structures. Proc. of the 14th International Symposium: Advanced Display Technolodies, Crimea, 2006. p. 16.
  78. Fursey GN. Field Emission. ISSEP. 2000;6(11):96–103.
  79. Jonge N, Lamy Y, Schoots K, Oosterkamp TH. High brightness electron beam from a multi-walled carbon nanotube. Nature (London). 2002;420(6914):393–395. DOI:10.1038/nature01233.  
Received: 
25.07.2012
Accepted: 
25.07.2012
Published: 
31.05.2013
Short text (in English):
(downloads: 117)