For citation:
Trubetskov D. I., Vdovina G. M. About current state high frequency vacuum electronic and microelectronic devices with field emission. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 1, pp. 35-66. DOI: 10.18500/0869-6632-2013-21-1-35-66
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 565)
Language:
Russian
Article type:
Review
UDC:
621.385.6
About current state high frequency vacuum electronic and microelectronic devices with field emission
Autors:
Trubetskov Dmitriy Ivanovich, Saratov State University
Vdovina Galina Mihajlovna, Saratov State University
Abstract:
Some results of researches and development of devices with field emission (TWT, BWO, carcinotrode, klystrons and X-ray tubes, field emission displays, etc.) have been briefly presented in the article. Lines of development of its theory have been designated. Also the vacuum microwave electronics programs offered in Europe and USA have been considered. They are directed on using new technologies in coping with the terahertz frequency range, reflecting the trend of recent years.
Key words:
Reference:
- Trubetskov DI, Rozhnev AG, Sokolov DV. Lectures on ultrahigh-frequency vacuum microelectronics. Saratov: SEI ESC «Kolledg», 1996. 238 p. (In Russian).
- Tatarenko NI, Kravchenko VF. Autoemission nanostructures and devices based on them. Moscow: Fizmatlit; 2006. 195 p. (In Russian).
- Dyachkov PN. Carbon nanotubes: structure, properties, applications. Moscow: BINOM; 2006. (In Russian).
- Spindt CA, Brodie L, Humphrey L, Westerberg ER. Physical properties of thinfilm field emission cathodes with molybdenum cones. J. of Appl. Physics. 1976;47(12):5248–5263. DOI:10.1063/1.322600
- Lockwood NP, Cartwright KL, d’Aubigny CY. et.al. Development of field emission cathodes, electron gun and a slow wave structure for a terahertz travelling wave tube. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2010. p. 25. DOI: 10.1109/IVELEC.2010.5503622
- Sheshin EP. Surface structure and autoemission properties of carbon materials. Moscow: Fizmatkniga; 2001. 287 p. (In Russian).
- Vikulov I. USA microwave vacuum electronics program HiFIVE. Electronics: STB. 2008;5:70–75.
- Vikulov I. Acuum microwave electronics in accordance with IVEC 2009 MATERIALS. Electronics: STB. 2010;4:62–73.
- Whaley DR, Duggal R, Armstrong CM. et al. Operation of a low-voltage high-transconductance field emitter array TWT. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2008. p. 78. 10.1109/PLASMA.2008.4590952
- Whaley DR, Duggal R, Armstrong CM. et al. 100 W operation of a cold cathode TWT. IEEE Trans. Plasma Sci. 2009;56(5):896–905. DOI:10.1109/TED.2009.2015614
- Dayton JA, Kory CL, Mearini GT. Backward wave oscillator development at 300 and 650 GHz. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. p. 423. DOI: 10.1109/IVELEC.2006.1666363
- Dayton JA, Mearini GT, Kory CL, Bower CA. Fabrication of diamond-based 300 and 650 GHz BWOs. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2007. p. 1. DOI: 10.1109/IVELEC.2007.4283297
- Paoloni C, Carlo AD, Brunetti F. et.al. Design and Fabrication of a 1 THz Backward Wave Amplifier. Terahertz Science and Technology. 2011;4(4):149–163.
- Guzilov I, Konnov A, Kuzmich K. et.al. Multi Beam S-band Klystron with the field emitter. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2009. p. 366. DOI: 10.1109/IVELEC.2009.5193542
- Krasnova GM. On two-dimensional linear theory of interaction between electron beam and traveling electromagnetic wave: allowing for influence of space charge in a thin beam model. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(5):148-159. DOI: 10.18500/0869-6632-2010-18-5-148-159
- Krasnova GM. Interaction of space-charge waves in an electron beam with electro-magnetic waves in a longitudinal magnetic field. Physics of Wave Phenomena. 2011;19(4):290–300. DOI:10.3103/S1541308X11040091
- Kyhl RL, Webster HF. Break of Hollow Cylindrical Electron Beams. IRE Trans. Electron Devices ED-3. 1956;3(4):172–183. DOI: 10.1109/T-ED.1956.14185
- Cutler CC. Instability in hollow and strip electron beams. Jour. of Applied Physics. 1956;27(9):1028–1029. DOI:10.1063/1.1722535
- Shevchik VN, Trubetskov DI. Analytical methods of calculation in microwave electronics. Moscow: Sovetskoe radio, 1970. 584 p. (In Russian).
- Shiffler D, Nation JA, Kerslick GS. A high-power, TWT amplifier. IEEE Trans. on Pl. Sci. 1990;18(3):546–552. DOI:10.1109/27.55926
- Imura H, Tsuida S, Takahasi M. et al. Electron gun design for TWT using a field emitter array cathode. Electron Devices Meeting. 1997:721–734. DOI:10.1109/IEDM.1997.650484
- Whaley DR, Gannon BM, Smith CR, Armstrong CM, Spindt CA. Application of field emitter arrays to microwave power amplifiers. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2000. DOI:10.1109/OVE:EC.2000.847464
- Whaley DR, Gannon BM, Smith CR, Armstrong CM, Spindt CA. Application of field emitter arrays to microwave power amplifiers. IEEE Trans. Plasma Sci. 2000;28(3):727–747. DOI:10.1109/27.887712
- Whaley DR, Gannon BM, Heinen VO. et al. Experimential demonstration of an emission-gated TWT amplifier. IEEE Trans. Plasma Sci. 2002;30(3):998–1008. DOI:10.1109/TPS.2002.801527
- Vikulov I. POWER MICROWAVES MODULS. VACUUM AND SOLID-STATE DCCTRONICS HYBRID. Electronics: STB. 2007;7:69–71.
- Li X, Bai G, Ding M. et al. Field emitter array electron gun for travelling wave tubes. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. p. 507. DOI:10.1109/IVELEC.2006.1666405
- Legagneux P., Le Sech N., Guiset P., et. al. Carbon nanotube based cathodes for microwave amplifiers (Keynote Presenation). IEEE International Vacuum Electronics Conference Proceedings, IVEC 2009. p. 80. DOI:10.1109/IVELEC.2009.5193378
- Andre F, Ponard P, Rozier Y. et al. TWT and X-Ray devices based on carbon nanotubes. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2010. p. 83. DOI: 10.1109/IVELEC.2010.5503591
- Gurinovich AB, Kuraev AA, Sinitsyn AK. Research of optimal variants of LBV with cathodic modulation. 9Th Int. Crimean Conference “Microwave&Telecommunication Technology” (CriMiCo’1999). Crimea,Ukraine. 1999. p.127.
- Gourinovitch AB, Kurayev AA, Popkova TL, Sinitsyn AK. Optimized TWT with cathode modulation. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2000. DOI:10.1109/OVE:EC.2000.847444
- Petrosyan AI, Rogovin VI. THE SIMULATION OF TWTO ELECTRON-OPTICAL SYSTEMS WITH FIELD EMISSION. Plasma Physics Reports. 2008;2:83–88.
- Dayton JA, Mearini GT, Kory CL. et al. Assembly and preliminary testing of the prototype 650 GHz BWO. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2008. p. 394. DOI:10.1109/IVELEC.2008.4556365
- Baik C-W, Son Y-M, Kim SI. et al. Microfabricated coupled-cavity backward-wave oscillator for terahertz imaging. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2008. 398–399 p. DOI:10.1109/IVELEC.2008.4556367
- Jeon SG, Shin YM, Kim JI. et al. Photonic Crystal Reflex Klystron using Field Emission Cathode. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2004. 120–121 p. DOI: 10.1109/IVNC.2004.1354929
- Park G-S, Jang KH, Jeong SG. et. al. Experimental investigation on high-order-mode photonic crystal reflex klystron using Spindt-type cathodes. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. 189–190 p. DOI:10.1109/IVELEC.2006.1666248
- Rozhnev AG, Ryskin NM, Sokolov DV, Trubetskov DI, Han ST, Kim JI, Park GS. Novel concepts of vacuum microelectronic microwave devices with field emitter cathode arrays. Physics of Plasmas. 2002;9(9):4020–4027. DOI: 10.1063/1.1497684
- Solntsev VA. Karsinotrode. Patent for the Invention № 2121194RU2121194С1 from 27.10.98; 6 p.
- Solntsev VA. Nonlinear phenomena in vacuum microelectronic structures. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(1):70–72.
- Solntsev VA. Nonlinear analysis of a carcinotrode: a BWO with an automodulation of the cathode emission. Jour. of Communications Technology and Electronics. 2000;45(1):S39—S45.
- Solntsev VA, Koltunov RP, Melikhov VO. Studying characteristics of a backward-wave tube with self-modulated emission. Journal of Communications Technology and Electronics. 2005;50(4):448-455.
- Koltunov R, Melikhov V, Solntsev V. Frequency properties of BWO with emission automodulation. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2005. p. 203.
- Melikhov VO, Nazarova MV, Solntsev VA. Simulation of nonstationary processes in backward-wave tube with the self-modulation of emission (Carcinotrode). Journal of Communications Technology and Electronics. 2009;54(12):1403–1412. DOI: 10.1134/S1064226909120109.
- Nazarova MV, Solntsev VA, Melikhov VO. Electron grouping in optimal mode of karsinotrode. Journal of Communications Technology and Electronics. 2011;56(4):511–513.
- Trubetskov DI, Hramov AE. Lectures on ultra-high frequency electronics for physicists. V. 1. Moscow: Fizmatlit; 2003. 496 p. (In Russian).
- Kuraev AA, Kukashevich DV, Sinitsyn AK, Sokol VA. Generation of electromagnetic waves in diode structures with autoemission cathodes. 9Th Int. Crimean Conference “Microwave&Telecommunication Technology” (CriMiCo’1999). Crimea,Ukraine. 1999. p.133.
- Kurayev AA, Lukashevich DV, Sinitsyn AK. Modeling of Diode Oscillators with Field-Emission Cathodes. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2000. DOI:10.1109/OVE:EC.2000.847445
- Bower C, Shalom D, Zhu W. et al. Micromachined Vacuum Triode Using a Carbon Nanotube Cold Cathode. IEEE Trans. Electron Devices. 2002;49(8):1478–1483. DOI:10.1109/TED.2002.801247
- Holloway B, Zhu M, Zhao X. et al. Milliamp-Class Back-Gated Triode Field Emission Devices Based on Free-Standing Two-Dimensional Carbon Nanostructures. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. p. 517. DOI:10.1109/IVELEC.2006.1666410
- Tyler T, Shenderova O, Ray M. et al. Buried-line back-gated triode field emission devices. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. p. 519. DOI: 10.1109/IVELEC.2006.1666411
- Milne WI, Teoa KB. et al. Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J. Vac. Sci. Technol. 2006;24(1):345–348. DOI:10.1116/1.2161223
- Riccitelli R, Brunetti F, Petrolati E. et al. Innovative design of nano-vacuum triode. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2007. p. 1. DOI:10.1109/IVELEC.2007.4283346
- Riccitelli R, Brunetti F, Paoloni C. et al. Field-emission vacuum triode: THz waveguide solutions for the transmission lines. IEEE International Vacuum Electro-nics Conference Proceedings, IVEC 2008. p. 382. DOI:10.1109/IVELEC.2008.4556544
- Benedik AI. Numerical simulation of the field emission diode oscillator with photonic crystal resonator. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(2):63-71. DOI: 10.18500/0869-6632-2012-20-2-63-71
- Benedik AI, Ryskin NM, Han S-T. Simulation of the field emission diod oscillator with photonic crystal resonator. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. 379–380 p. DOI:10.1109/IVEC.2012.6262202
- Lei W, Zhang X, Wang B. Field emission display with printable planar triode. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. p. 555. DOI:10.1109/IVESC.2012.6264208
- Zheng L, Zhu Z, Lei W. et al. Enhanced field emission density current of a planar triode structure with double cathodes. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. p. 377. DOI:10.1109/IVESC.2012.6264193
- Terranova ML, Orlanducci S, Tamburri E. et.al. Cold cathodes assembled by microsized cnt systems. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2009. p. 415. DOI:10.1109/IVELEC.2009.5193585
- Cheng Y, Zhou O. Electron field emission from carbon nanotubes. C.R. Physique. 2003;4(9):1021–1033. DOI:10.1016/S1631-0705(03)00103-8
- Modi A, Koratkar N, Lass E. et al. Miniaturized gas ionization sensors using carbon nanotubes. Nature (London). 2003;424(6945):171–174. DOI:10.1038/nature01777
- Espinosa RJ, McKenzie C, Munson M. et.al. X-ray tubes incorporating CNT cathodes. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2004. p. 253. DOI:10.1109/IVELEC.2004.1316300
- Maslennikov OY, Stanislavchik KV. et.al. Small-sized X-ray tube with the field electron emitter on the base of CNT. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. p. 513. DOI:10.1109/IVELEC.2006.1666408
- Schwoebel P, Holland CE, Spindt CA. Field emission arrays for tomographic medical X-ray imaging. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. p. 511.
- Guzilov I, Kuzmich K, Maslennikov O. et.al. Multi beam X-ray tube with field emitter on the base of nanocrystalline graphite for computer tomography. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2009. p. 289. DOI:10.1109/IVELEC.2009.5193411
- Jeong J-W, Kim J-W, Choi S, Kang J-T, Song Y-H. The Vacuum-sealed microfocus X-ray tube with CNT field emitters. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. p. 93.
- Kim J-W, Kang J-T, Jeong J-W, Choi S, Kim D-O, Song Y-H. The design and fabrication of CNT field emitters for a vacuum-sealed X-ray tube. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. p. 103.
- Kim JM, Hong JP, Kim JW, Choi JH, Park NS, Kang JH, Jang JE, Ryu YS, Yang HC, Gorfinkel BI, Roussina EV. Reliability analysis of 4 in. fieldemission display. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. 1997;15(2):528–532. DOI 10.1116/1.589286.
- Temple D. Recent progress in field emitter array development for high performance applications. Materials Science and Engineering. 1999;R24(5):185–239. DOI:10.1016/s0927-796x(98)00014-x.
- Choi WB, Chung DS, Kang JH. et al. Fully sealed, high-brightness carbonnanotube field-emission display. Appl. Phys. Lett. 1999;75(20):3129–3131. DOI:10.1063/1.125253
- Gorfinkel BI, Mironov BN, Mikhailova VV, Finkelstein SH, Khazanov AA, Zelepukin AV. Patent for the invention RU2174268C2
- http://www.ire.krgtu.ru/subdivision/pc/data/tecnol.htm
- Budzialovsky VV, Zasemkov Sun. Patent for the invention RU2174266C2.
- Gorfinkel BI, Abanshin NP, Hou VX, Krusos DA, Naar C, Kastalsky A, Schohor C. Patent for the invention of RU2217837C2.
- Itoh S. et al. Development of field emission display. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. 2004;22(3):1362–1366. DOI:10.1116/1.1691409.
- Sakurada K. et al. Development of high resolution Spindt-type FED. IDW06, 2006. p. 1805.
- Itoh S. et al. Development of field emission display (FEDs). J. of Vac. Sci. Technol. Microelectronics and Nanometer Structures. 2006;24(6):1821.
- Mimura H. The status of field emission displays. IEEE International Vacuum Electronics Conference Proceedings, IVEC 2007. p. 1. DOI:10.1109/IVELEC.2007.4283192
- Abanshin NP, Yakunin AN, Gorfinkel BI. Questions of development of durable flat graphic indicators on the basis of planar-edge auto-emissive structures. Proc. of the 14th International Symposium: Advanced Display Technolodies, Crimea, 2006. p. 16.
- Fursey GN. Field Emission. ISSEP. 2000;6(11):96–103.
- Jonge N, Lamy Y, Schoots K, Oosterkamp TH. High brightness electron beam from a multi-walled carbon nanotube. Nature (London). 2002;420(6914):393–395. DOI:10.1038/nature01233.
Received:
25.07.2012
Accepted:
25.07.2012
Published:
31.05.2013
Journal issue:
Short text (in English):
(downloads: 117)
- 2350 reads