Для цитирования:
Трубецков Д. И., Вдовина Г. М. О современном состоянии сверхвысокочастотных вакуумных электронных и микроэлектронных приборов с управляемой эмиссией // Известия вузов. ПНД. 2013. Т. 21, вып. 1. С. 35-66. DOI: 10.18500/0869-6632-2013-21-1-35-66
О современном состоянии сверхвысокочастотных вакуумных электронных и микроэлектронных приборов с управляемой эмиссией
В работе коротко изложены некоторые результаты исследований и разработок приборов с управляемой эмиссией (ЛБВ, ЛОВ, карсинотрод, клистроны, а также рентгеновские лампы, полевые эмиссионные дисплеи и др.), которые проводились в течение последних двух десятилетий. Обозначен ряд направлений развития теории приборов с модуляцией эмиссии на поверхности катода. Также рассмотрены созданные в Европе и США программы по вакуумной СВЧ-электронике, направленные на использование новых технологий при освоении терагерцового диапазона и отражающие тенденции последних лет.
- Трубецков Д.И., Рожнев А.Г., Соколов Д.В. Лекции по сверхвысокочастотной вакуумной микроэлектронике. Саратов: Гос УНЦ «Колледж», 1996.
- Татаренко Н.И., Кравченко В.Ф. Автоэмиссионные наноструктуры и приборы на их основе. М.: Физматлит, 2006.
- Дьячков П.Н. Углеродные нанотрубки: строение, свойства, применения. М.: БИНОМ. Лаборатория знаний, 2006.
- Spindt C.A., Brodie L., Humphrey L., Westerberg E.R. Physical properties of thinfilm field emission cathodes with molybdenum cones // J. of Appl. Physics. 1976. Vol. 47, No 12. P. 5248.
- Lockwood N.P., Cartwright K.L., d’Aubigny C.Y., et.al. Development of field emission cathodes, electron gun and a slow wave structure for a terahertz travelling wave tube // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2010. P. 25.
- Шешин Е.П. Структура поверхности и автоэмиссионные свойства углеродных материалов. М.: Физматкнига, 2001.
- Викулов И. Американская программа по СВЧ вакуумной электронике HiFIVE // Электроника НТБ. 2008. No 5. С. 70.
- Викулов И. Вакуумная СВЧ электроника. По материалам конференции IVEC 2009 // Электроника НТБ. 2010. No 4. C. 108.
- Whaley D.R., Duggal R., Armstrong C.M., et al. Operation of a low-voltage high-transconductance field emitter array TWT // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2008. P. 78.
- Whaley D.R., Duggal R., Armstrong C.M., et al. 100 W operation of a cold cathode TWT // IEEE Trans. Plasma Sci. 2009. Vol. 56, No 5. P. 896.
- Dayton J.A., Kory C.L., Mearini G.T. Backward wave oscillator development at 300 and 650 GHz // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. P. 423.
- Dayton J.A., Mearini G.T., Kory C.L., Bower C.A. Fabrication of diamond-based 300 and 650 GHz BWOs // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2007. P. 1.
- Paoloni C., Carlo A.D., Brunetti F., et.al. Design and Fabrication of a 1 THz Backward Wave Amplifier // Terahertz Science and Technology. 2011. Vol. 4, No 4. P. 149.
- Guzilov I., Konnov A., Kuzmich K., et.al. Multi Beam S-band Klystron with the field emitter // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2009. P. 366.
- Краснова Г.М. К двумерной линейной теории взаимодействия электронного потока с бегущей электромагнитной волной: учет влияния пространственного заряда в модели тонкого пучка // Изв. вузов «ПНД». 2010. Т. 18, No 5. C. 151.
- Krasnova G.M. Interaction of space-charge waves in an electron beam with electro-magnetic waves in a longitudinal magnetic field // Physics of Wave Phenomena. 2011. Vol. 19, No 4. P. 290.
- Kyhl R.L., Webster H.F. Break of Hollow Cylindrical Electron Beams // IRE Trans. Electron Devices ED-3. 1956. No 4. P. 172.
- Cutler C.C. Instability in hollow and strip electron beams // Jour. of Applied Physics. 1956. Vol. 27, No 9. P. 1028.
- Шевчик В.Н., Трубецков Д.И. Аналитические методы расчета в электронике СВЧ. М.: Советское радио, 1970.
- Shiffler D., Nation J.A., Kerslick G.S. A high-power, TWT amplifier // IEEE Trans. on Pl. Sci. 1990. Vol. 18, No 3. Р. 546.
- Imura H., Tsuida S., Takahasi M., et al. Electron gun design for TWT using a field emitter array cathode // Electron Devices Meeting, 1997. IEDM ‘97. Technical Digest. P. 721.
- Whaley D.R., Gannon B.M., Smith C.R., Armstrong C.M., Spindt C.A. Application of field emitter arrays to microwave power amplifiers // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2000.
- Whaley D.R., Gannon B.M., Smith C.R., Armstrong C.M., Spindt C.A. Application of field emitter arrays to microwave power amplifiers // IEEE Trans. Plasma Sci. 2000. Vol. 28, No 3. P. 727.
- Whaley D.R., Gannon B.M., Heinen V.O., et al. Experimential demonstration of an emission-gated TWT amplifier // IEEE Trans. Plasma Sci. 2002. Vol. 30, No 3. P. 998.
- Викулов И. Мощные СВЧ-модули. Гибрид вакуумной и твердотельной электроники // Электроника НТБ. 2007. No 7. C. 69
- Li X., Bai G., Ding M., et al. Field emitter array electron gun for travelling wave tubes // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. P. 507.
- Legagneux P., Le Sech N., Guiset P., et. al. Carbon nanotube based cathodes for microwave amplifiers (Keynote Presenation) // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2009. P. 80.
- Andre F., Ponard P., Rozier Y., et al. TWT and X-Ray devices based on carbon nanotubes // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2010. P. 83.
- Гуринович А.Б., Кураев А.А., Синицын А.К. Исследование оптимальных вариантов ЛБВ с катодной модуляцией // 9-я Международная Крымская Конференция «СВЧ-техника и телекоммуникационные технологии», КрыМиКо 1999. С. 127.
- Gourinovitch A.B., Kurayev A.A., Popkova T.L., Sinitsyn A.K. Optimized TWT with cathode modulation // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2000.
- Петросян А.И., Роговин В.И. Расчет электронно-оптических систем ЛБВО с полевой эмиссией. // Прикладная физика. 2008. No 2. С. 86.
- Dayton J.A., Mearini G.T., Kory C.L., et al. Assembly and preliminary testing of the prototype 650 GHz BWO // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2008. P. 394.
- Baik C.-W., Son Y.-M., Kim S.I., et al. Microfabricated coupled-cavity backward-wave oscillator for terahertz imaging // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2008. P. 398.
- Jeon S.G., Shin Y.M., Kim J.I., et al. Photonic Crystal Reflex Klystron using Field Emission Cathode // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2004. P. 120.
- Park G.-S., Jang K.H., Jeong S.G. et. al. Experimental investigation on high-order-mode photonic crystal reflex klystron using Spindt-type cathodes // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. P. 189.
- Rozhnev A.G., Ryskin N.M., Sokolov D.V., Trubetskov D.I., Han S.T., Kim J.I., Park G.S. Novel concepts of vacuum microelectronic microwave devices with field emitter cathode arrays // Physics of Plasmas. 2002. Vol. 9, No 9. P. 4020.
- Солнцев В.А. Карсинотрод. Патент на изобретение No 2121194RU2121194С1.Б.И. No 30.27.10.98 г.
- Солнцев В.А. Нелинейные явления в вакуумных микроэлектронных структурах // Изв.вузов «ПНД». 1998. Т. 6, No 1. С. 54.
- Solntsev V.A. Nonlinear analysis of a carcinotrode: a BWO with an automodulation of the cathode emission // Jour. of Communications Technology and Electronics. 2000. Vol. 45, No 1. P. S39.
- Солнцев В.А., Колтунов Р.П., Мелихов В.О. Исследование характеристик лампы обратной волны с автомодуляцией эмиссии // Радиотехника и электроника. 2005. Т. 50, No 4. С. 483.
- Koltunov R., Melikhov V., Solntsev V. Frequency properties of BWO with emission automodulation // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2005. P. 203.
- Мелихов В.О., Назарова М.В., Солнцев В.А. Моделирование нестационарных процессов в лампе обратной волны с автомодуляцией эмиссии (карсинотроде) // РЭ. 2009. Т. 54, No 12. С. 1481.
- Назарова М.В., Солнцев В.А., Мелихов В.О. Группирование электронов в оптимальном режиме карсинотрода // РЭ. 2011. Т. 56, No 4. С. 511.
- Трубецков Д.И., Храмов А.Е. Лекции по СВЧ электронике для физиков. М.:Физматлит, 2003. Т. 1.
- Кураев А.А., Лукашевич Д.В., Синицын А.К., Сокол В.А. Генерация электромагнитных волн в диодных структурах с автоэмиссионными катодами // 9-я Международная Крымская Конференция «СВЧ-техника и телекоммуникационные технологии», КрыМиКо 1999. C. 133.
- Kurayev A.A., Lukashevich D.V., Sinitsyn A.K. Modeling of Diode Oscillators with Field-Emission Cathodes // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2000.
- Bower C., Shalom D., Zhu W., et al. Micromachined Vacuum Triode Using a Carbon Nanotube Cold Cathode // IEEE Trans. Electron Devices 2002. Vol. 49, No 8. P. 1478.
- Holloway B., Zhu M., Zhao X., et al. Milliamp-Class Back-Gated Triode Field Emission Devices Based on Free-Standing Two-Dimensional Carbon Nanostructures // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. P. 517.
- Tyler T., Shenderova O., Ray M., et al. Buried-line back-gated triode field emission devices // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. P. 519.
- Milne W.I., Teoa K.B., et al. Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers // J. Vac. Sci. Technol. 2006. Vol. 24, No 1. P. 345.
- Riccitelli R., Brunetti F., Petrolati E., et al. Innovative design of nano-vacuum triode // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2007. P. 1.
- Riccitelli R., Brunetti F., Paoloni C., et al. Field-emission vacuum triode: THz waveguide solutions for the transmission lines // IEEE International Vacuum Electro-nics Conference Proceedings, IVEC 2008. P. 382.
- Бенедик А.И. Численное моделирование генератора на основе диода с автоэмиссионным катодом и фотонно-кристаллическим резонатором // Изв.вузов «ПНД». 2012. Т. 20, No 2. С. 63.
- Benedik A.I., Ryskin N.M., Han S.-T. Simulation of the field emission diod oscillator with photonic crystal resonator // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. Р. 379.
- Lei W., Zhang X., Wang B. Field emission display with printable planar triode // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. P. 555.
- Zheng L., Zhu Z., Lei W., et al. Enhanced field emission density current of a planar triode structure with double cathodes // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. P. 377.
- Terranova M.L., Orlanducci S., Tamburri E., et.al. Cold cathodes assembled by microsized cnt systems // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2009. P. 415.
- Cheng Y., Zhou O. Electron field emission from carbon nanotubes // C.R. Physique. 2003. No 4. P.1021.
- Modi A., Koratkar N., Lass E., et al. Miniaturized gas ionization sensors using carbon nanotubes // Nature (London). 2003. No 424. P. 171.
- Espinosa R.J., McKenzie C., Munson M., et.al. X-ray tubes incorporating CNT cathodes // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2004. P. 253.
- Maslennikov O.Y., Stanislavchik K.V., et.al. Small-sized X-ray tube with the field electron emitter on the base of CNT // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. P. 513.
- Schwoebel P., Holland C.E., Spindt C.A. Field emission arrays for tomographic medical X-ray imaging // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2006. P. 511.
- Guzilov I., Kuzmich K., Maslennikov O., et.al. Multi beam X-ray tube with field emitter on the base of nanocrystalline graphite for computer tomography // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2009. P. 289.
- Jeong J.-W., Kim J.-W., Choi S., Kang J.-T., Song Y.-H. The Vacuum-sealed microfocus X-ray tube with CNT field emitters // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. P. 93.
- Kim J.-W., Kang J.-T., Jeong J.-W., Choi S., Kim D.-O. Song Y.-H. The design and fabrication of CNT field emitters for a vacuum-sealed X-ray tube // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2012. P. 103.
- Kim J.M., Hong J.P., Kim J.W., Choi J.H., Park N.S., Kang J.H., Jang J.E., Ryu Y.S., Yang H.C., Gorfinkel B.I., Roussina E.V. Reliability analysis of 4 in. fieldemission display // Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. 1997. Vol. 15, No 2. P. 528.
- Temple D. Recent progress in field emitter array development for high performance applications // Materials Science and Engineering. 1999. R24. P. 185.
- Choi W.B., Chung D.S., Kang J.H., et al. Fully sealed, high-brightness carbonnanotube field-emission display // Appl. Phys. Lett. 1999. Vol. 75, No 20. P. 3129.
- Горфинкель Б.И., Миронов Б.Н., Михайлова В.В., Финкельштейн С.Х., Хазанов А.А., Зелепукин А.В. Патент на изобретение RU2174268С2.
- http://www.ire.krgtu.ru/subdivision/pc/data/tecnol.htm
- Будзиаловский В.В., Засемков В.С. Патент на изобретение RU2174266C2.
- Горфинкель Б.И., Абаньшин Н.П., Хоу В.Х., Крузос Д.А., Наар С., Кастальский А., Шохор С. Патент на изобретение RU2217837С2.
- Itoh S. et al. Development of field emission display // Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. 2004. Vol. 22, No 3. P. 1362.
- Sakurada K. et al. Development of high resolution Spindt-type FED // IDW06, 2006. P. 1805.
- Itoh S. et al. Development of field emission display (FEDs) // J. of Vac. Sci. Technol. Microelectronics and Nanometer Structures. 2006. No 6. P. 1821.
- Mimura H. The status of field emission displays // IEEE International Vacuum Electronics Conference Proceedings, IVEC 2007. P. 1.
- Abanshin N.P., Yakunin A.N., Gorfinkel B.I. Questions of development of durable flat graphic indicators on the basis of planar-edge auto-emissive structures // Proc. of the 14th International Symposium: Advanced Display Technolodies, Crimea, 2006. P. 16.
- Фурсей Г.Н. Автоэлектронная эмиссия // Соросовский образовательный журнал. 2000. No 11. C. 96.
- Jonge N., Lamy Y., Schoots K., Oosterkamp T.H. High brightness electron beam from a multi-walled carbon nanotube // Nature (London). 2002. No 420. P. 393.
- 2299 просмотров