ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Pavlov E. A., Zhuzhoma E. V., Osipov G. V. Alternative methods for spiral wave chaos control and suppressing in cardiac models. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 4, pp. 40-57. DOI: 10.18500/0869-6632-2015-23-4-40-57

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 124)
Language: 
Russian
Article type: 
Article
UDC: 
621.391.01

Alternative methods for spiral wave chaos control and suppressing in cardiac models

Autors: 
Pavlov Evgenij Aleksandrovich, Federal state budgetary educational institution of higher professional education Nizhny Novgorod state University named N. And.Lobachevsky
Zhuzhoma Evgenij Viktorovich, Federal state budgetary educational institution of higher professional education Nizhny Novgorod state University named N. And.Lobachevsky
Osipov Grigorij Vladimirovich, Federal state budgetary educational institution of higher professional education Nizhny Novgorod state University named N. And.Lobachevsky
Abstract: 

We investigate elements, which describes the Luo–Rudy model equations. We ana?lyze the influence of different parameters for the spiral wave chaos properties.We analyze the effect of (i) constant current influence, (ii) calcium channels blocking, (iii) potassium channels activating. We present the histograms of the middle frequencies of elements, when the spiral wave chaos takes place. We describe the ability of using complex impact for suppressing spiral wave chaos and the ability of using high-frequency signal with exponential reverse amplitude for suppressing (which is more really for using in in-vitro experiments).

Reference: 
  1. Jalife J., Gray R.A. Drifting vortices of electrical waves underlie ventricular fibril?lation in the rabbit heart // Acta. Physiol. Scand. 1996. Vol. 157. P. 123.
  2. Jalife J., Gray R.A., Morley G.E., Davidenko J.M. Self-organization and the dyna?mical nature of ventricular fibrillation // Chaos. 1998. Vol. 8. P. 79.
  3. Panfilov A.V. Spiral breakup as a model of ventricular fibrillation // Chaos. 1998. Vol. 8. P. 57.
  4. Witkowski F.X., Leon L.J., Penkoske P.A., Giles W.R., Spano M.L., Ditto W.L., Winfree A.T. Spatiotemporal evolution of ventricular fibrillation // Nature. 1998. Vol. 392. P. 78.
  5. Guo W., Quio C., Zhang Z., Ouyang Q., Wang H. Spontaneous suppression of spiral turbulence based on feedback strategy // Phys. Rev. E. 2010. Vol. 81. 056214.
  6. Sakurai T., Mihaliuk E., Chirila F., Showalter K. Design and control of wave propagation patterns in excitable media // Science. 2002. Vol. 296. P. 2009.
  7. Vilas C., Garcia M.R., Banga J.R., Alonso A.A. Robust feedback control of distributed chemical reaction systems // Chem. Eng. Sc. 2007. Vol. 62. P. 2941.
  8. Yoneshima H., Konishi K., Kokame H. Symposium on Nonlinear Theory and its applications // Chaos. 2008. Vol. 21. 023101.
  9. Alonso S., Sagues F., Mikhailov A.S. Taming Winfree turbulence of scroll waves in excitable media // Science. 2003. Vol. 299. P. 1722.
  10. Kovaleva N. A., Loskutov A. Yu. Stabilization of diffusion-induced chaotic processes// Doklady–Physical Chemistry. 2004. Vol. 396, №1. P. 105.
  11. Stamp A.T., Osipov G.V., Collins J.J. Suppressing arrhythmias in cardiac models using overdrive pacing and calcium channel blockers // Chaos. 2002. Vol. 12. P. 931.
  12. Osipov G.V., Collins J.J. Using weak impulses to suppress traveling waves in excitable media // Phys. Rev. E. 1999. Vol. 60. P. 54.
  13. Zhang H., Hu B., Hu G. Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media // Phys. Rev. E. 2003. Vol. 68. 026134.
  14. Loskutov A. Yu., Cheremin R. V., Vysotsky S. A. Stabilization of turbulent dynamics in excitable media by an external point action// Doklady–Physics. 2005. Vol. 50, №10. P. 490.
  15. Loskutov A. Yu., Vysotsky S. A. New approach to the defibrillation problem: Suppression of the spiral wave activity of cardiac tissue // Journal of Experimental and Theoretical Physics Letters. 2006. Vol. 84, №9. P. 524.
  16. Allessie M., Kirchhof C., Scheffer G.J., Chorro F., Brugada J. Regional control of atrial fibrillation by rapid pacing in conscious dogs // Circulation. 1991. Vol. 84. P. 1689.
  17. Capucci R.A., Ravelli F., Nollo G., Montenero A.S., Biffi M., Villani G.Q. Capture window in human atrial fibrillation // J. Cardiovasc. Electrophysiol. 1999. Vol. 10. P. 319.
  18. Daoud E.G., Pariseau B., Niebauer M., Bogun F., Goyal F., Harvey M., Man K.C., Strickberger S.A., Morady F. Response of type I atrial fibrillation to atrial pacing in humans // Circulation. 1996. Vol. 94. P. 1036.
  19. Kalman J. M., Olgin J. E., Karch M. R., Lesh M. D. Regional entrainment of atrial fibrillation in man // J. Cardiovasc. Electrophysiol. 1996. Vol. 7. P. 867.
  20. Kirchhof C., Chorro F., Scheffer G.J., Brugada J., Konings K., Zetelaki Z., Allessie M. Regional entrainment of atrial fibrillation studied by high-resolution mapping in open-chest dogs // Circulation. 1993. Vol. 88. P. 736.
  21. KenKnight B.H., Bayly P.V., Gerstle R.J., Rollins D.L., Wolf P.D., Smith W.M., Ideker R.E. Regional capture of fibrillating ventricular myocardium: evidence of an excitable gap // Circ. Res. 1995. Vol. 77. P. 849.
  22. Bassett A.L., Chakko S.,Epstein M. Are calcium antagonists proarrhythmic? // J. Hypertens. 1997. Vol. 15. P. 915.
  23. Chay T.R. Why are some antiarrhythmic drugs proarrhythmic? Cardiac arrhythmia study by bifurcation analysis // J. Electrocardiol. 1995. Vol. 28. P. 191.
  24. Sakaguchi H., Nakamura Y. Sample entropy of GPi neurons dependence on the level of alertness in 6OHDA rats // J. of the Phys. Soc. Jap. 2010. Vol. 79. 074802.
  25. Tandri H., Weinberg S.H., Chang K.C., Zhu R., Trayanova N.A., Tung L., Berger R.D. Reversible cardiac conduction block and defibrillation with high-frequency electric field // Sc. Trans. Med. 2011. Vol. 102. 102ra96.
  26. Luther S., Fenton F. H., Kornreich B.G., Squires A., Bittihm P. Low-energy control of electrical turbulence in the heart // Nature. 2011. Vol. 7355. P. 235.
  27. Sridhar S., Duy-Manh L., Yun-Chieh M., Sinha S., Pik-Yin L., Chan C.K. Suppression of cardiac alternans by alternating-period-feedback stimulations //Phys. Rev. E. 2013. Vol. 87. 042712.
  28. Luo C.H., Rudy Y. A model of the ventricular cardiac action potential // Circ. Res. 1991. Vol. 68. P. 1501.
  29. Krinsky V.I., Agladze K.I.Interaction of rotating waves in an active chemical medium // Physica D. 1983. Vol. 8. P. 50.
  30. Lee K.J. Wave pattern selection in an excitable system // Phys. Rev. Let. 1997. Vol. 79. P. 2907.
  31. Xie F., Qu Z., Weiss J.N., Garfinkel A. Interactions between stable spiral waves with different frequencies in cardiac tissue // Phys. Rev. E 1999. Vol. 59. P. 2203.
  32. Zykov V.S. Spiral waves in two-dimensional excitable media // Ann. N.Y. Acad. Sci. 1990. Vol. 591. P. 75
Received: 
24.07.2015
Accepted: 
09.10.2015
Published: 
31.03.2016
Short text (in English):
(downloads: 68)