ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Volkova S. A., Vytovtov K. А., Barabanova E. A., Hahomov S. A., Kovalenko D. L., Ivanov M. G. Analytical method of optical wave behavior studying in nonlinear medium with periodically arranged conducting nanofilms. Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, vol. 31, iss. 5, pp. 575-585. DOI: 10.18500/0869-6632-003058, EDN: DCPOEN

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Article type: 
530.182; 535.015

Analytical method of optical wave behavior studying in nonlinear medium with periodically arranged conducting nanofilms

Volkova Svetlana Anatolena, Astrakhan State Technical University
Hahomov Sergey Anatolevich, Francysk Skaryna Gomel State University
Kovalenko Dmitry Leonidovich, Francysk Skaryna Gomel State University
Ivanov Mihail Germanovich, Moscow Power Engineering Institute (MPEI)

The purpose of this work is to build the analytical model of the behavior of a harmonic wave in a nonlinear optical medium with periodically arranged nanofilms.

Methods. The modernized method is presented of non-smooth transformation of the argument to eliminate the Dirac functions on the right side of the non-linear inhomogeneous differential equation describing linear polarized wave behavior within a non-linear optical medium with periodically arranged conducting nanofilms. Small parameter methods, in particular, the averaging method, is also used to find an approximate analytical solution.

Results. The fully analytical model of the behavior of a linear polarized harmonic wave within a nonlinear optical medium with periodically arranged conducting nanofilms is constructed.

Conclusion. For the case of propagation of a linearly polarized harmonic wave in a nonlinear optical medium with periodically arranged conducting nanofilms, the mathematical model based on the non-smooth argument transformation method is constructed. The model is fully analytical, all expressions are obtained directly from Maxwell’s equations by identical transformations. The limits of its applicability are determined by the limits of application of the wave theory of light. 

This work was supported by RSF, № 23-29-00795,
  1. Brillouin L, Parodi М. Propagation des ondes dans les milieux periodiques. Paris: Masson et Dunod; 1956. 348 p.
  2. Yeh P. Optical Waves in Layered Media. New York: John Wiley & Sons; 1988. 416 p.
  3. Born M, Wolf E. Principles of Optics. 4th edition. New York: Pergamon Press; 1968. 992 p.
  4. Vytovtov KA, Bulgakov AA. Analytical investigation method for electrodynamics properties of periodic structures with magnetic layers. Telecommunications and Radio Engineering. 2006; 65(11–15):1307–1321. DOI: 10.1615/TelecomRadEng.v65.i14.60.
  5. Vytovtov KA. Analytical investigation of stratified isotropic media. Journal of the Optical Society of America A. 2005;22(4):689–696. DOI: 10.1364/JOSAA.22.000689.
  6. Kaur S, Saini D, Sappal A. Band gap simulations of one-dimensional photonic crystal. International Journal of Advanced Research in Computer Science and Electronics Engineering. 2012; 1(2):161–165.
  7. Zhu X, Zhang Y, Chandra D, Cheng SC, Kikkawa JM, Yang S. Two-dimensional photonic crystals with anisotropic unit cells imprinted from PDMS membranes under elastic deformation. Proc. SPIE. 2009;7223:72231C. DOI: 10.1117/12.809275.
  8. Luan PG, Ye Z. Two dimensional photonic crystals. arXiv:cond-mat/0105428. arXiv Preprint; 2001. DOI: 10.48550/arXiv.cond-mat/0105428.
  9. Chutinan A, Noda S. Highly confined waveguides and waveguide bends in three-dimensional photonic crystal. Appl. Phys. Lett. 1999;75(24):3739–3741. DOI: 10.1063/1.125441.
  10. Prasad T, Colvin V, Mittleman D. Superprism phenomenon in three-dimensional macroporous polymer photonic crystals. Phys. Rev. B. 2003;67(16):165103. DOI: 10.1103/PhysRevB.67.165103.
  11. Gupta SD. Nonlinear optics of stratified media. In: Wolf E, editor. Progress in Optics. Vol. 38. Amsterdam: Elsevier; 1998. P. 1–84. DOI: 10.1016/S0079-6638(08)70349-4.
  12. Shen YR. The Principles of Nonlinear Optics. Chichester: Wiley; 1984. 576 p.
  13. Panasyuk GY, Schotland JC, Markel VA. Quantum theory of the electromagnetic response of metal nanofilms. Phys. Rev. B. 2011;84(15):155460. DOI: 10.1103/PhysRevB.84.155460.
  14. Antonets IV, Kotov LN, Nekipelov SV, Karpushov EN. Conducting and reflecting properties of thin metal films. Tech. Phys. 2004;49(11):1496–1500. DOI: 10.1134/1.1826197.
  15. Andreev AV, Postnov SS. Metallic nanofilms optical response description based on self-consistent theory. Journal of Physics: Conference Series. 2008;129:012046. DOI: 10.1088/1742-6596/129/1/ 012046.
  16. Matveev VA, Pleshanov NK, Gerashchenko OV, Bayramukov VY. Complex study of titanium nano-films prepared by magnetron sputtering. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2014;8(5):991–996. DOI: 10.1134/S102745101405036X.
  17. Pilipchuk VN, Volkova SA, Starushenko GA. Study of a non-linear oscillator under parametric impulsive excitation using a non-smooth temporal transformation. Journal of Sound and Vibration. 1999;222(2):307–328. DOI: 10.1006/jsvi.1998.2067.
  18. Vladimirov VS. Generalized Functions in Mathematical Physics. Moscow: Nauka; 1979. 320 p. (in Russian).
  19. Pilipchuk VN. A transformation for vibrating systems based on a non-smooth periodic pair of functions. Doklady AN Ukr. SSR Ser. A. 1988;4:37–40.
  20. Perestyuk NA, Plotnikov VA, Samoilenko AM, Skripnik NV. Differential Equations with Impulse Effects: Multivalued Right-hand Sides with Discontinuities. Berlin: Walter de Gruyter; 2011. 321 p.
  21. Moiseev NN. Asymptotic Methods of Nonlinear Mechanics. Moscow: Nauka; 1969. 380 p. (in Russian). 
Available online: