ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Tsukerman V. D., Eremenko Z. S., Karimova O. V., Kulakov S. V., Sazykin A. A. Cognitive neurodynamics two strategies navigation behavior of organisms. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 6, pp. 96-108. DOI: 10.18500/0869-6632-2011-19-6-96-108

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 170)
Language: 
Russian
Article type: 
Article
UDC: 
57.024

Cognitive neurodynamics two strategies navigation behavior of organisms

Autors: 
Tsukerman Valery Davidovich, Southern Federal University
Eremenko Zoja Sergeevna, Southern Federal University
Karimova Oksana Valerevna, Southern Federal University
Kulakov Sergej Vladimirovich, Southern Federal University
Sazykin Aleksej Aleksandrovich, Research Institute of Neurocybernetics them. A.B. Kogan, Southern Federal University
Abstract: 

The conceptual model and computer simulations results of path integration in freescalable nonlinear oscillator neural networks with even cyclic inhibition (ECI-networks) are discussed in this paper. To estimate the phase shifting under input impact the ECInetworks contain two subsystems namely reference and information ones. The population of reference (nonencoding) oscillatory units has significant role in generation and stabilization of numerous time scales despite it don’t assist directly in the phase pattern encoding of input signals. Multifunctionality is the main characteristics of ensemble encoding of environment space because the same ensembles can encode (to present coherently) different events of environment space. It was experimentally shown that the high-precision frequency-phase mechanism in the frameworks of ensemble hypothesis can be used in navigation behavior.

Reference: 
  1. Igloi K, Zaoui M, Berthoz A, Rondi-Reig L. Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies. Hippocampus. 2009;19(12):1199–1211. DOI: 10.1002/hipo.20595.
  2. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus. 1996;6(2):149–172. DOI: 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K.
  3. Ainge JA, Tamosiunaite M, Woergoetter F, Dudchenko PA. Hippocampal CA1 place cells encode intended destination on a maze with multiple choice points. J. Neurosci. 2007;27(36):9769–2779. DOI: 10.1523/jneurosci.2011-07.2007.
  4. Diba K, Buzsaki G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 2007;10(10):1241–1242. DOI: 10.1038/nn1961.
  5. Igloi K, Doeller CF, Berthoz A, Rondi-Reig L, Burgess N. Lateralized human hippocampal activity predicts navigation based on sequence or place memory. PNAS USA. 2010;107(32):14466–14471. DOI: 10.1073/pnas.1004243107.
  6. Dabaghian Y, Cohn AG, Frank L. Topological coding in hippocampus. arXiv: 0702052. arXiv Preprint; 2007. Available from: http://lanl.arxiv.org/abs/q-bio.OT/0702052.
  7. Wills TJ, Cacucci F, Burgess N, O’Keefe J. Development of the hippocampal cognitive map in preweanling rats. Science. 2010;328(5985):1573–1576. DOI: 10.1126/science.1188224.
  8. Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, Moser EI, Moser MB. Development of the spatial representation system in the rat. Science. 2010;328(5985):1576–1580. DOI: 10.1126/science.1188210.
  9. Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsirki G. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 1995;15(1):47–60. DOI: 10.1523/jneurosci.15-01-00047.1995.
  10. Senior TJ, Huxter JR, Allen K, O’Neill J, Csicsvari J. Gamma oscillatory firing reveals distinct populations of pyramidal cells in the CA1 region of the hippocampus. J. Neurosci. 2008;28(9):2274–2286. DOI: 10.1523/jneurosci.4669-07.2008.
  11. Tsukerman VD. Nonlinear Dynamics of Sensory Perception, or What and How the Brain Encodes. Rostov-on-Don: RSU Publishing; 2005. 195 p. (in Russian).
  12. Tsukerman VD. Mathematical model of phase coding of events in the brain. Mathematical Biology and Bioinformatics. 2006;1(1):97–107 (in Russian). DOI: 10.17537/2006.1.97.
  13. Tsukerman VD, Karimova OV, Kulakov SV, Sazykin AA. Modern neurobiology discoveries and mathematical modeling result in new understanding of navigation behaviour neurodinamics. Neurocomputers: Development and Application. 2010;(2):17–27 (in Russian).
  14. Tsukerman VD. Neurodynamic foundations of navigation behavior. In: Gaponov-Grekhov AV, Nekorkin VI, editors. Nonlinear Waves-2010. Nizhny Novgorod: IAP RAS; 2011. P. 396–411 (in Russian).
  15. Hasselmo ME. Arc length coding by interference of theta frequency oscillations may underlie context-dependent hippocampal unit data and episodic memory function. Learning and Memory. 2007;14:782–794. DOI: 10.1101/lm.686607.
  16. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436(7052):801–806. DOI: 10.1038/nature03721.
  17. Doeller C, Barry C, Burgess N. Evidence for grid cells in a human memory network. Nature. 2010;463(7281):657–661. DOI: 10.1038/nature08704.
  18. Griffin AS, Etienne AS. Updating the path integrator through a visual fix. Psychobiology. 1998;26(3):240–248. DOI: 10.3758/BF03330612.
  19. Mittelstaedt H, Mittelstaedt ML. Homing by path integration. In: Papi F, Wallraff HG, editors. Avian Navigation. Proceedings in Life Sciences. Springer, Berlin, Heidelberg; 1982. P. 290–297. DOI: 10.1007/978-3-642-68616-0_29.
  20. McNaughton BL, Chen LL, Markus EJ. “Dead reckoning”, landmark learning, and the sense of direction: A neurophysiological and computational hypothesis. J. Cogn. Neurosci. 1991;3(2):190–202. DOI: 10.1162/jocn.1991.3.2.190.
  21. Redish AD, Touretzky DS. The role of the hippocampus in solving the Morris water maze. Neural Computation. 1998;10(1):73–111. DOI: 10.1162/089976698300017908.
  22. Jeffery KJ, O’Keefe JM. Learned interaction of visual and idiothetic cues in the control of place field orientation. Exp. Brain Res. 1999;127(2):151–161. DOI: 10.1007/s002210050785.
  23. Berthoz A, Viaud-Delmon I. Multisensory integration in spatial orientation. Curr. Opin. Neurobiol. 1999;9(6):708–712. DOI: 10.1016/s0959-4388(99)00041-0.
Received: 
14.07.2011
Accepted: 
14.07.2011
Published: 
29.02.2012
Short text (in English):
(downloads: 98)