ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Cukerman V. D., Eremenko Z. S., Karimova O. V., Kulakov S. V., Sazykin A. A. Cognitive neurodynamics two strategies navigation behavior of organisms. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 6, pp. 96-108. DOI: 10.18500/0869-6632-2011-19-6-96-108

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 68)
Article type: 

Cognitive neurodynamics two strategies navigation behavior of organisms

Cukerman Valerij Davidovich, Southern Federal University
Eremenko Zoja Sergeevna, Southern Federal University
Karimova Oksana Valerevna, Southern Federal University
Kulakov Sergej Vladimirovich, Southern Federal University
Sazykin Aleksej Aleksandrovich, Research Institute of Neurocybernetics them. A.B. Kogan, Southern Federal University

The conceptual model and computer simulations results of path integration in freescalable nonlinear oscillator neural networks with even cyclic inhibition (ECI-networks) are discussed in this paper. To estimate the phase shifting under input impact the ECInetworks contain two subsystems namely reference and information ones. The population of reference (nonencoding) oscillatory units has significant role in generation and stabilization of numerous time scales despite it don’t assist directly in the phase pattern encoding of input signals. Multifunctionality is the main characteristics of ensemble encoding of environment space because the same ensembles can encode (to present coherently) different events of environment space. It was experimentally shown that the high-precision frequency-phase mechanism in the frameworks of ensemble hypothesis can be used in navigation behavior.

  1. Igloi K., Zaoui M., Berthoz A., Rondi-Reig L. Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies // Hippocampus. 2009. Vol. 19. P. 1199.
  2. Skaggs W.E., McNaughton B.L., Wilson M.A., Barnes C.A. Teta phase precession in hippocampal neuronal populations and the compression of temporal sequences // Hippocampus. 1996. Vol. 6. P. 149.
  3. Ainge J.A., Tamosiunaite M., Woergoetter F., Dudchenko P.A. Hippocampal CA1 place cells encode intended destination on a maze with multiple choice points // J. Neurosci. 2007. Vol. 27. P. 9769.
  4. Diba K., Buzsaki G. Forward and reverse hippocampal place-cell sequences during ripples // Nat. Neurosci. 2007. Vol. 10. P. 1241.
  5. Igloi K., Doeller C.F., Berthoz A., Rondi-Reig L., Burgess N. Lateralized human hippocampal activity predicts navigation based on sequence or place memory //PNAS USA. 2010. Vol. 107. P. 14466.
  6. Dabaghian Yu., Cohn A.G., Frank L. Topological coding in hippocampus. 2007.
  7. Wills T.J., Cacucci F., Burgess N., O’Keefe J. Development of the hippocampal cognitive map in preweanling rats // Science. 2010. Vol. 328. P. 1573.
  8. Langston R.F., AingeJ.A.,Couey J.J., Canto C.B., Bjerknes T.L., Witter M.P., Moser E.I., Moser M.-B. Development of the spatial representation system in the rat // Science. 2010. Vol. 328. P. 1576.
  9. Bragin A., Jando G., Nadasdy Z., Hetke J., Wise K., Buzsirki G. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat // J. Neurosci. 1995. Vol. 15. P. 47.
  10. Senior T.J., Huxter J.R., Allen K., O’Neill J., Csicsvari J. Gamma oscillatory firing reveals distinct populations of pyramidal cells in the CA1 region of the hippocampus // J. Neurosci. 2008. Vol. 28. P. 2274.
  11. Цукерман В.Д. Нелинейная динамика сенсорного восприятия, или Что и как кодирует мозг. Ростов н/Д.: Изд-во РГУ, 2005. 195 с.
  12. Цукерман В.Д. Математическая модель фазового кодирования в мозге // Математическая биология и биоинформатика. 2006. Т. 1. С. 97.
  13. Цукерман В.Д., Каримова О.В., Кулаков С.В., Сазыкин А.А. Современные нейробиологические данные и новое в нейродинамике навигационного поведения // Нейрокомпьютеры: Разработка и применение // Радиотехника. 2010. No 2. С. 17.
  14. Цукерман В.Д. Нейродинамические основы навигационного поведения // Нелинейные волны-2010 / Отв.ред. А.В.Гапонов-Грехов, В.И. Некоркин. Нижний Новгород: ИПФ РАН, 2011. С. 396.
  15. Hasselmo M.E. Arc length coding by interference of theta frequency oscillations may underlie context-dependent hippocampal unit data and episodic memory function // Learning and Memory, 2007. Vol. 14. P. 782.
  16. Hafting T., Fyhn M., Molden S., Moser M.B., Moser E.I. Microstructure of a spatial map in the entorhinal cortex // Nature. 2005. Vol. 436. P. 801.
  17. Doeller C., Barry C., Burgess N. Evidence for grid cells in a human memory network // Nature. 2010. Vol. 463. P. 657.
  18. Griffin A.S., Etienne A.S. Updating the path integrator through a visual fix // Psychobiology. 1998. Vol. 26. P. 240.
  19. Mittelstaedt H., Mittelstaedt M.L., Homing by path integration / F., Wallraff HG (eds.), Avian Navigation, Springer, Berlin Heidelberg, 1982.
  20. McNaughton B.L., Chen L.L., Markus E.J. Dead reckoning, landmark learning, and the sense of direction: A neurophysiological and computational hypothesis // J. Cog. Neuroscience. 1991. Vol. 3. P. 190.
  21. Redish A.D., Touretzky D.S. The role of the hippocampus in solving the Morris water Maze // Neural Computation. 1998. Vol. 10. P. 73.
  22. Jeffery K.J., O’Keefe J.M. Learned interaction of visual and idiothetic cues in the control of place field orientation // Exp. Brain Research. 1999. Vol. 127. P. 151.
  23. Berthoz A., Viaud-Delmon I. Multisensory integration in spatial orientation // Curr. Opin. Neurobiology. 1999. Vol. 9. P. 708.  
Short text (in English):
(downloads: 39)