ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kuznetsov A. P., Kuznetsov S. P. Critical dynamics for one-dimensional maps part 1: Feigenbaum's scenario. Izvestiya VUZ. Applied Nonlinear Dynamics, 1993, vol. 1, iss. 1, pp. 15-33.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Critical dynamics for one-dimensional maps part 1: Feigenbaum's scenario

Autors: 
Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Kuznetsov Sergey Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

A review of main results is given, concerning the Feigenbaum's scenario in the context of critical phenomena theory. Computer-generated illustrations of scaling are presented. Approximate renormalization group (RG) analysis is considered, allowing to obtain RG transformation in an explicit form. Examples of nonlinear systems are discussed, demonstrating this type of critical behaviour.

Key words: 
Reference: 
  1. Myrberg PJ. Iteration der reelen polynome zweiten grades. Ann. Acad. Sci. Fenn. Ser. A. 1963;336:1-18.
  2. Sharkovskii АN. The existence of cycles of continuous display of a straight line inside itself. Ukrainian Math. J. 1964;16:61-71.
  3. Metropolis N, Stein РR, Stein ML. Finite limit sets for transformations of the unit interval. J. Comb. Theory. 1973;15(1):25-44. DOI: 10.1016/0097-3165(73)90033-2
  4. May RM. Simple mathematical models with very complicated dynamics. Nature. 1976;261:459-467. DOI: 10.1038/261459a0
  5. Afraimovich VS, Shilnikov LP. On some global bifurcations connected with the disappearance of a fixed point of saddle-node type. Sov. Math. Doklady. 1974;15:1761-1765.
  6. Pomeau Y, Manneville P. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 1980;74:189-197. DOI: 10.1007/bf01197757
  7. Arnold VI. Additional Chapters of the Theory of Ordinary Differential Equations. М.: Nauka; 1978. 304 p.
  8. Ruelle D, Takens F. On the nature of turbulence. Commun. Math. Phys. 1971;20:167-192. DOI: 10.1007/bf01646553
  9. Shenker SJ. Scaling behavior in a map of a circle onto itself: Empirical results. Physica D. 1982;5(2-3):405-411. DOI: 10.1016/0167-2789(82)90033-1
  10. Feigenbaum MJ. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 1978;19(1):25-52. DOI: 10.1007/bf01020332
  11. Feigenbaum MJ. The universal metric properties of nonlinear transformations. J. Stat. Phys. 1979;21(6):669-706. DOI: 10.1007/bf01107909
  12. Feigenbaum MJ. Universal Behavior in Nonlinear Systems. Los Alamos Science. 1980;1(1):4-27.
  13. Hirsh JE, Nauenberg M, Scalapino DJ. Intermittency in the presence of noice: a renormalization group formulation. Phys. Lett.  A. 1982;87(8):391-393. DOI: 10.1016/0375-9601(82)90165-7
  14. Hu B, Rudnik J. Exact solution to the Feigenbaum renormalization-group equations for intermittency. Phys. Rev. Lett. 1982;48(24):1645-1648. DOI: 10.1103/PhysRevLett.48.1645
  15. Ostlund S, Rand D, Sethna J, Siggia E. Universal properties of the transition from quasi-periodicity to chaos in dissipative systems. Physica D. 1983;8(3):303-342. DOI: 10.1016/0167-2789(83)90229-4
  16. Feigenbaum MJ, Kadanoff LР, Shenker SJ. Quasiperiodicity in dissipative systems: Renormalization group analysis. Physica D. 1982;5(2-3):370-386. DOI: 10.1016/0167-2789(82)90030-6
  17. Hu B. Introduction to real-space renormalization-group methods in critical and chaotic phenomena. Phys. Rep. 1982;91(5):233-295. DOI: 10.1016/0370-1573(82)90057-6
  18. Aranson LS, Gaponov—Grekhov AV, Rabinovich MI. The onset and spatial development of turbulence in flow systems. Physica D. 1988;33(1-3):1-20. DOI: 10.1016/S0167-2789(98)90004-5
  19. Chang SJ, Wortis M, Wright JA. Iterative properties of a one-dimensional quartic map. Critical lines and tricritical behavior. Phys. Rev. A. 1981;24(5):2669-2684. DOI: 10.1103/PhysRevA.24.2669
  20. Zaks МА, Lyubimov DV, Pikovskii AS. Universal scenarios of transition to chaos through homoclinic bifurcations. Preprint of the Institute of Solid Media Mechanics AS USSR. 1987. 70 p.
  21. Vul EB, Sinai YaG, Khanin КМ. Feigenbaum universality and the thermodynamic formalism. Rus Math. Surveys. 1984;39(3):1-40. DOI: 10.1070/RM1984v039n03ABEH003162
  22. Moon FC. Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Weinheim: Wiley;1987. 309 p.
  23. Berge P, Pomeau Y, Vidal C. Order Within Chaos. Towards a Deterministic Approach to Turbulence. N.Y.: Wiley; 1987. 329 p.
  24. Schuster HG. Deterministic Chaos. Weinheim: VCH; 1988. 270 p.
  25. Jakobson MV. Absolutely continuous measures for oneparameter families of one-dimensional maps. Commun. Math. Phys. 1981;81(1):39-88. DOI: 10.1007/BF01941800
  26. Sharkovskii АN, Maistrenko YuА, Romanenko YuE. Difference Equations and Their Applications. Kiev: Naukova Dumka; 1986. 278 p.
  27. Huberman B., Zisook A. Power spectra of strange attractors. Phys. Rev. Lett. 1981;46(10):626-628. DOI: 10.1103/PhysRevLett.46.626
  28. Nauenberg M, Rudnik J. Universality and the power spectrum at the onset of chaos. Phys. Rev. B. 1981;24(1):493-495. DOI: 10.1103/PhysRevB.24.493
  29. Halsey TS, Jensen MH, Kadanoff LP, Procaccia I, Shraiman ВI. Fractal measures and their singularities. Phys. Rev. A. 1986;33(2):1141-1151. DOI: 10.1103/PhysRevA.33.1141
  30. Grassberger P, Procaccia I. Characterization of strange attractors. Phys. Rev. Lett. 1983;50(5):346-349. DOI: 10.1103/PhysRevLett.50.346
  31. Lanford ОЕ III. A computer assisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc. 1982;6(3):427-434. DOI: 10.1090/S0273-0979-1982-15008-X
  32. Franceschini V. Feigenbaum segence of bifurcations in the Lorenz model. J. Stat. Phys. 1980;22:397-406. DOI: 10.1007/BF01014649
  33. Каi T. Universality of power spectrum of a dinamical system with an infinitemsequence of period doubling bifurcations. Phys. Lett. A. 1981;86(5):263-266. DOI: 10.1016/0375-9601(81)90361-3
  34. Testa J, Pere J, Jeffries С. Evidence for universal chaotic behavior of a driven nonlinear oscillator. Phys. Rev. Lett. 1982;48(11):714-717. DOI: 10.1103/PhysRevLett.48.714
  35. Yen WJ, Kao YH. Universal scaling and chaotic behavior of a Josephson-junction analog. Phys. Rev. Lett. 1982;49(26):1888-1891.
  36. Anishchenko VS, Astakhov VV, Letchford ТЕ, Safonova МА. Bifurcations in a three-dimensional two-parameter autonomous oscilatory system with a strange attractor. Radiophys Quantum Electron. 1983;26(2):135-140. DOI: 10.1007/BF01039833
  37. Libhaber A, Fauve S, Laroche С. Two-parameter study of the routes to chaos. Physica D. 1983;7(1-3):73-84. DOI: 10.1016/0167-2789(83)90117-3
  38. Xiao-lan Chen, You—qin Wang, Shi—gang Chen. Period-doubling bifurcations and chaotic behavior in nonequilibrium superconductivity film. Solid State Commun. 1984;52(5):551-554. DOI: 10.1016/0038-1098(84)90875-5
  39. Astakhov VV, Bezruchko BP, Seleznev ЕP. Study of the dynamics of a nonlinear oscillatory circuit under harmonic influence. Sov. J. Comm. Tech. Electron. 1987;32(12):2558-2566.
  40. Lorenz ЕМ. Deterministic nonperiodic flow. J. Atmos. Sci. 1963;20(2):130-141. DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  41. Ikeda К, Daido H, Akimoto О. Optical turbulence: chaotic behavior of transmitted light from a ring cavity. Phys. Rev. Lett. 1980;45(9):709-712. DOI: 10.1103/PhysRevLett.45.709
  42. Carmichael H, Snapp R, Schieve W. Oscillatory instabilities leading to “optical turbulence” in a bistable ring cavity. Phys. Rev. A. 1982;26(6):3408-3422. DOI: 10.1103/PhysRevA.26.3408.
  43. Kuznetsov SP, Erastova EN. Feigenbaum’s theory. In: Lectures on Microwave Electronics and Radiophysics. Vol. 2. Saratov: Saratov University Publishing; 1983. P. З.
  44. Collet P, Eckmann JP, Koch H. Period doubling bifurcations for families of maps on R^n. J. Stat. Phys. 1980;25(1):1-14. DOI: 10.1007/BF01008475
  45. Crawford D, Omohundro S. On the global structure of period doubling flows. Physica D. 1984;13:161-180. DOI: 10.1016/0167-2789(84)90275-6
  46. Kuznetsov AP, Kuznetsov SP. Critical dynamics of coupled-map lattices at onset of chaos (review). Radiophys Quantum Electron. 1991;34(10):845-868. DOI: 10.1007/BF01083617
  47. Kuznetsov AP, Kuznetsov SP, Sataev IR. Influence of a fractal signal on a Feigenbaum system and bifurcation in renormalization group equations. Radiophys Quantum Electron. 1991;34(6):556-563. DOI: 10.1007/BF01039580
  48. Kuznetsov AP, Kuznetsov SP, Sataev IR. Period-doubling system under fractal signal. Bifurcation in the renormalization group equation. Chaos, Solitons&Fractals. 1991;1(4):355-367. DOI: 10.1016/0960-0779(91)90026-6
  49. Chang SJ, Fendley PR. Scaling and universal behavior on the bifurcation attractor. Phys. Rev. A. 1986;33(6):4092-4103. DOI: 10.1103/PhysRevA.33.4092
  50. Chirikov BV, Shepelyanskii DL. The border of chaos and statistical anomalies. Preprint 86-174. Saratov branch of the Novosibirsk Institute of Nuclear Physics AS USSR, 1986. 30 p.
Received: 
05.02.1993
Accepted: 
11.04.1993
Published: 
20.07.1993