ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kuznetsov A. P., Kuznetsov S. P., Sataev I. R. Critical dynamics for one-dimensional maps. Part II. Two-parametre transition to chaos. Izvestiya VUZ. Applied Nonlinear Dynamics, 1993, vol. 1, iss. 3, pp. 17-35.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Critical dynamics for one-dimensional maps. Part II. Two-parametre transition to chaos

Autors: 
Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Kuznetsov Sergey Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Sataev Igor Rustamovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Generalization of Feigenbaum’s method is considered with respect to the two—parametre transition to chaos in one—dimensional maps. The approximate and exact renormalization group analyses are developed. Illustrations of scaling are presented and physical examples are discussed.

Key words: 
Acknowledgments: 
The work was supported by the Foundation for Basic Research of Russia. Grant FBR 93-02-161169.
Reference: 
  1. Holmes PJ. A Nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. London. A. 1979;292:419-448. DOI: 10.1098/rsta.1979.0068
  2. Glass L, Peres К. Fine structure of phase locking. Phys. Rev. Lett. 1982;48(26):1772-1775. DOI: 10.1103/PhysRevLett.48.1772
  3. Schell M, Fraser S, Kapral К. Subharmonic bifurcations in the sine таре: an infinite of bifurcationst. Phys. Rev. A. 1983;28(1):373-378. DOI: 10.1103/PhysRevA.28.373
  4. Fraser S, Kapral К. Analysis of flow hysteresis by a one—dimensional map. Phys. Rev. A. 1982;25(6):3223-3233. DOI: 10.1103/PhysRevA.25.3223
  5. Mackay RS, Tresser C. Some flesh on the bifurcation structure of bimodel maps. Physica D.1987;27(3):412-422. DOI: 10.1016/0167-2789(87)90040-6
  6. Carcasses J, Mira C, Bosch M, Simo C, Tatjer JC. Crossroad area — spring area transition (1). Parameter plane representation. Int. J. Bifurc. Chaos. 1991;1(1):183-196. DOI: 10.1142/S0218127491000117.
  7. Mira C, Carcasses J. On the “crossroad аrеа — saddle area” and “crossroad area — spring area” transitions. IJBC. 1991;1(3):641-655. DOI: 10.1142/S0218127491000464.
  8. Sharkovskii АN. The existence of cycles of continuous display of a straight line inside itself. Ukrainian Math. J. 1964;16:61-71.
  9. Chang SJ, Wortis M, Wright JA. Iterative properties of a one-dimensional quartic map. Critical lines and tricritical behavior. Phys. Rev. A. 1981;24(5):2669-2684. DOI: 10.1103/PhysRevA.24.2669
  10. Stanley HE, Koniglio А, Klein W, Nakanishi H, Redner S, Reynolds PJ, Shlifer G. Critical Phenomena: Past, Present and “Future”. In: Haken H, editor. Dynamics of Synergetic Systems. Springer Series in Synergetics. Vol 6. Berlin: Springer; 1980. P. 22-38. DOI: 10.1007/978-3-642-67592-8_2
  11. Komuro M, Tokunaga R, Matsumoto T, Chua LO, Horta A. Global bifurcation analysis of the double scroll circuit. Int. J. Bif. Chaos. 1991;1(1):139-182. DOI: 10.1142/S0218127491000105
  12. Markus М. Chaos in maps with continous and discontinuous maxima. Comput. Phys. 1990;4:481-493. DOI: 10.1063/1.4822940
  13. Feigenbaum MJ. The transition to aperiodic behaviour in turbulent systems. Comm. Math. Phys. 1980;77:65-86. DOI: 10.1007/bf01205039
  14. Landau LD, Lifshits ЕМ. Hydrodynamics. М.: Nauka; 1986. 736 p.
  15. Anishchenko VS. Complex Oscillations in Simple Systems. М.: Nauka; 1990. 312 p. (in Russian).
  16. Kuznetsov AP, Kuznetsov SP. Critical dynamics of one-dimensional mappings. Part 1. Feigenbaum’s script. Izvestiya VUZ. Applied Nonlinear Dynamics. 1993;1(1):15-33. (in Russian).
  17. Collet P, Eckmann JP, Koch H. Period doubling bifurcations for families of maps on R^n. J. Stat. Phys. 1981;25:1-14. DOI: 10.1007/bf01008475
  18. Chua L, Komuro M, Matsumoto T. The double scroll family, Parts I and II. IEEE Trans Circuits Syst. 1986;33(11):1072-1118. DOI: 10.1109/TCS.1986.1085869
  19. Kuznetsov AP, Kuznetsov SP, Sataev IR. Critical phenomena in Feigenbaum systems with one-way coupling. Radiophys. Quantum. Electron. 1991;34(4):299-306. DOI: 10.1007/BF01080762
  20. Kuznetsov AP, Kuznetsov SP, Sataev IR. Bicritical dynamics of period— doubling systems with unidirectional coupling. Int. J. Bif. Chaos. 1991;1(4):839-848. DOI: 10.1142/S0218127491000610
  21. Bezruchko VP, Pudovochkin ОB. Oscillations near the chaos threshold in a system of unidirectionally coupled nonlinear electrical oscillators. Radiophys. Quantum. Electron. 1992;35(1):25-28. DOI: 10.1007/BF01064998
  22. Kuznetsov AP, Kuznetsov SP, Sataev IR. Multiparametric criticality of nonlinear systems. In: IX winter school-seminar. Lectures on Microwave Electronics and Radiophysics. Saratov: College; 1992. P. 241.
  23. Kuznetsov SP. Tricriticality in two—dimensional maps. Phys. Lett. A. 1992;169(6):438-444. DOI: 10.1016/0375-9601(92)90824-6
Received: 
12.04.1993
Accepted: 
11.07.1993
Published: 
12.01.1994