ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Makeeva A. A., Dmitrichev A. S., Nekorkin V. I. Cycles-canards and torus-canards in a weakly inhomogeneous ensemble of FitzHugh–Nagumo neurons with excitatory synaptic couplings. Izvestiya VUZ. Applied Nonlinear Dynamics, 2020, vol. 28, iss. 5, pp. 524-546. DOI: 10.18500/0869-6632-2020-28-5-524-546

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 210)
Article type: 

Cycles-canards and torus-canards in a weakly inhomogeneous ensemble of FitzHugh–Nagumo neurons with excitatory synaptic couplings

Makeeva A. A., Institute of Applied Physics of the Russian Academy of Sciences
Dmitrichev Aleksej Sergeevich, Institute of Applied Physics of the Russian Academy of Sciences
Nekorkin Vladimir Isaakovich, Institute of Applied Physics of the Russian Academy of Sciences

The purpose of this work is to study the dynamics of a weakly inhomogeneous ensemble of three FitzHugh–Nagumo neurons with excitatory synaptic couplings. To single out main types of canard solutions of the system and obtain the regions in parameter space the solutions exist in. Methods. In this paper the dynamics of autonomous systems are studied by using methods based on geometric singular perturbation theory. To study the dynamics of non-autonomous systems we develop an approximate approach and use numerical methods such as obtaining of Poincare maps. Results. The dynamics of the second neuron was studied analytically provided that the first neuron is at rest. The existence of solutions corresponding to different types of periodic oscillations, including canard ones, was shown. To study non-autonomous system, describing the dynamics of third neuron, the approach based on construction of auxiliary autonomous system was developed. It was shown that in the system there exist different types of invariant torus, including canard ones, corresponding to the regimes of various subthreshold and spiking quasi-periodic oscillations of the third neuron. Torus-canards were discovered corresponding to various types of subthreshold-spiking oscillations. Conclusion. The dynamics of a weakly inhomogeneous ensemble of three FitzHugh–Nagumo neurons, the depolarization levels of which linearly increase with their index, and connected in series through chemical synapses, is considered. It was shown that the existence of torus-canards with simple and complex shape is possible in the ensemble. The torus-canards with simple shape correspond either to subthreshold or to spiking oscillations of the ensemble neurons. On the other hand, the torus-canards with complex shape correspond to the regimes of complex subthreshold-spiking oscillations. 

  1. Mountcastle V.B. The columnar organization of the neocortex // Brain. 1997. Vol. 120. P. 701–722.
  2. Zhou C., Zemanova L., Zamora G., Hilgetag C.C., Kurths J. Hierarchical organization unveiled by functional connectivity in complex brain networks // Phys. Rev. Lett. 2006. Vol. 97, no. 23. P. 238103-1-4.
  3. Sporns O., Honey C.J., Kotter R. Identification and classification of hubs in brain networks // PLoS ONE. 2007. Vol. 2, no. 10. P. e1049-1-14.
  4. Kaiser M., Hilgetag C.C. and Kotter R. Hierarchy and dynamics of neural networks // Front. Neuroinform. 2010. Vol 4. P. 112.
  5. Klinshov V.V., Teramae J., Nekorkin V.I., Fukai T. Dense neuron clustering explains connectivity statistics in cortical microcircuits // PLoS One. 2014. Vol. 9, no. 4. P. e94292-1-12.
  6. Okujeni S., Kandler S., Egert U. Mesoscale architecture shapes initiation and richness of spontaneous network activity // Journal of Neuroscience. 2017. Vol. 37, no. 14. P. 3972–3987.
  7. Shafi R. Understanding the hierarchical organization of large-scale networks based on temporal modulations in patterns of neural connectivity // Journal of Neuroscience. 2018. Vol. 38, no. 13. P. 3154–3156.
  8. Okujeni S., Egert U. Self-organization of modular network architecture by activity-dependent neuronal migration and outgrowth // eLife. 2019. Vol. 8. P. e47996-1-29.
  9. Gilly W.F., Gillette R., McFarlane M. Fast and slow activation kinetics of voltage-gated sodium channels in molluscan neurons // Journal of Neurophysiology. 1997. Vol. 77. P. 2373–84.
  10. Aman T.K., Raman I.M. Subunit dependence of Na channel slow inactivation and open channel block in cerebellar neurons // Biophysical Journal. 2007. Vol. 92, no. 6. P. 1938–1951.
  11. Hong E., Kazanci F.G., Prinz A.A. Different roles of related currents in fast and slow spiking of model neurons from two phyla // J Neurophysiol. 2008. Vol. 100, no. 4. P. 2048–2061.
  12. Milescu L.S., Yamanishi T., Ptak K., Smith J.C. Kinetic properties and functional dynamics of sodium channels during repetitive spiking in a slow pacemaker neuron // Journal of Neuroscience. 2010. Vol. 30, no. 36. pp. 12113–12127.
  13. Larsson H.P. What determines the kinetics of the slow afterhyperpolarization (sAHP) in neurons? // Biophys J. 2013. Vol. 104, no. 2. P. 281–283.
  14. Ye Z., Yu X., Houston C.M., Aboukhalil Z., Franks N.P., Wisden W., Brickley S.G. Fast and slow inhibition in the visual thalamus Is influenced by allocating GABAA receptors with different y subunits // Front. Cell. Neurosci. 2017. Vol. 11. P. 95.
  15. Nelson M.J., Bosch C., Venance L., Pouget P. Microscale inhomogeneity of brain tissue distorts electrical signal propagation // Journal of Neuroscience. 2013. Vol. 33, no. 7. P. 2821–2827.
  16. Lengler J., Jug F., Steger A. Reliable neuronal systems: The importance of heterogeneity // PLoS ONE. 2013. Vol. 8, no. 12. P. e80694.
  17. Baroni F., Mazzoni A. Heterogeneity of heterogeneities in neuronal networks // Front. Comput. Neurosci. 2014. Vol. 8. P. 161.
  18. Petitpre C., Wu H., Sharma A., et al. Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system // Nat. Commun. 2018. Vol. 9, no. 1. P. 3691.
  19. Okujeni S., Egert U. Inhomogeneities in network structure and excitability govern initiation and propagation of spontaneous burst activity // Front. Neurosci. 2019. Vol. 13. P. 543.
  20. Demirtas et al. Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics // Neuron. 2019. Vol. 101. P. 1181–1194.
  21. Markram H. The human brain project // Scientific American. 2012. Vol. 306, no. 6. P. 50–55.
  22. Van Essen D.C., Smith S.M., Barch D.M., Behrens T.E., Yacoub E., Ugurbil K., Wu-Minn HCP Consortium. The WU-Minn human connectome project: An overview // Neuroimage. 2013. Vol. 80. P. 62–79.
  23. Wilson H.R., Cowan J.D. Excitatory and inhibitory interactions in localized populations of model neurons // Biophysical Journal. 1972. Vol. 12, no. 1. P. 1–24. 
  24. Zetterberg L.H., Kristiansson L., Mossberg K. Performance of a model for a local neuron population // Biological Cybernetics. 1978. Vol. 31, no. 1. P. 15–26.
  25. Sotero R.C., Trujillo-Barreto N.J., Iturria-Medina Y., Carbonell F., Jimenez J.C. Realistically coupled neural mass models can generate EEG rhythms // Neural Computation. 2007. Vol. 19, no. 2. P. 478–512.
  26. Deco G., Jirsa V.K., McIntosh A.R. Emerging concepts for the dynamical organization of restingstate activity in the brain // Nature Reviews Neuroscience. 2011. Vol. 12, no. 1. P. 43.
  27. Wendling F., Benquet P., Bartolomei F., Jirsa V. Computational models of epileptiform activity // Journal of Neuroscience Methods. 2016. Vol. 260. P. 233–251.
  28. Russo G., Jacques J., Slotine E. Physical Review E. 2010. Vol. 82. P. 041919-1-17.
  29. Maslennikov O.V., Kasatkin D.V., Rulkov N.F., Nekorkin V.I. Emergence of antiphase bursting in two populations of randomly spiking elements // Physical Review E. 2013. Vol. 88, no. 4. P. 042907.
  30. Schaub M.T., O’Clery N., Billeh Y.N., Delvenne J.-C., Lambiotte R., Barahona M. Graph partitions and cluster synchronization in networks of oscillators // Chaos. 2016. Vol. 26. P. 094821.
  31. Sorrentino F., Pecora L.M., Hagerstrom A.M., Murphy T.E., Roy R.. Complete characterization of the stability of cluster synchronization in complex dynamical networks // Sci. Adv. 2016. Vol. 2. P. e1501737
  32. Aminzare Z., Dey B., Davison E.N., Leonard N.E. Cluster synchronization of diffusively-coupled nonlinear systems: A contraction based approach // J. Nonlinear Sci. 2018 (on-line publication).
  33. Benoit E., Callot J.F., Diener F., and Diener M. Chasse au canard // Collect. Math. 1981. Vol. 31–32. P. 37.
  34. Kramer M.A., Traub R.D., Kopell N.J. New dynamics in cerebellar purkinje cells: Torus canards // Phys. Rev. Lett. 2008. Vol. 101. P. 068103-1-4.
  35. Rotstein H., Wechselberger M., Kopell N. Canard induced mixed-mode oscillations in amedial entorhinal cortex layer II stellate cell model // SIAM J. Appl. Dyn. Syst. 2008. Vol. 7. P. 1582–1611.
  36. Burke J., Desroches M., Barry A.M., Kaper T.J., Kramer M.A. A showcase of torus canards in neuronal bursters // J. Math. Neurosci. 2012. Vol. 2. no. 3.
  37. Mitry J., McCarthy M., Kopell N., Wechselberger M. Excitable neurons, firing threshold manifolds and canards // J. Math. Neurosci. 2013. Vol. 3. no. 12.
  38. Desroches M., Krupa M., Rodrigues S. Inflection, canards and excitability threshold in neuronal models // J. Math. Biol. 2013. Vol. 67. P. 989–1017.
  39. Krupa M., Vidal A., Clement F. A Network model of the periodic synchronization process in the dynamics of calcium concentration in GnRH neurons // J. Math. Neurosci. 2013. Vol. 3. no. 4.
  40. Vo T. Generic torus canards // Physica D. 2017. Vol. 356–357. P. 37–64.
  41. Zhan F., Liu S., Zhang X., Wang J., Lu B. Mixed-mode oscillations and bifurcation analysis in a pituitary model // Nonlinear Dyn. 2018. Vol. 94. P. 807–826
  42. Dick O.E. Mechanisms of dynamical complexity changes in patterns of sensory neurons under antinociceptive effect emergence // Neurocomputing. 2020. Vol. 378. P. 120–128.
  43. Fernandez-Garcia S., Vidal A. Symmetric coupling of multiple timescale systems with MixedMode Oscillations and synchronization // Physica D. 2020. Vol. 401. P. 132129-1-22.
  44. Baldemir H., Avitabile D., Tsaneva-Atanasova K. Pseudo-plateau bursting and mixed-mode oscillations in a model of developing inner hair cells // Commun. Nonlinear. Sci. Numer. Simulat. 2020. Vol. 80. P. 104979.
  45. Tchizawa K., Campbell S.A. On winding duck solutions in R4 // Proc. Neural Parallel Sci. Comput. 2002. Vol. 2. P. 315–318.
  46. Krupa M., Ambrosio B., and Aziz-Alaoui M. Weakly coupled two-slow–two-fast systems, folded singularities and mixed mode oscillations // Nonlinearity. 2014. Vol. 27. P. 1555.
  47. Ginoux J.-M., Llibre J. Canards existence in FitzHugh–Nagumo and Hodgkin–Huxley neuronal models // Math. Prob. Eng. 2015. Vol. 2015. P. 1–17.
  48. Davison E.N., Aminzare Z., Dey B., Leonard N.E. Mixed mode oscillations and phase locking in coupled FitzHugh–Nagumo model neurons // Chaos. 2019. Vol. 29. P. 033105-1-16.
  49. Eydam S., Franovic I., Wolfrum M. Leap-frog patterns in systems of two coupled FitzHugh– Nagumo units // Physical Review E. 2019. Vol. 99. P. 042207-1-9.
  50. Roberts K., Rubin J., Wechselberger M. Averaging, foided singularities and torus canards: Explaining transitions between bursting and spiking in a coupled neuron model // SIAM J. Appl. Dyn. Syst. 2015. Vol. 14. P. 1808–1844.
  51. Karamchandani A.J., Graham J.N., Riecke H. Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity // Chaos. 2018. Vol. 28. P. 043115-1-14.
  52. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane // Biophys. J. 1961. Vol. 1, no. 6. P. 445–466.
  53. Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon // Proc. IRE. 1962. Vol. 50, no. 10. P. 2061–2070. 
  54. Ermentrout B., Terman D. The Mathematical Foundations of Neuroscience. Ser. Interdisciplinary Applied Mathematics. Vol. 35. Springer, 2010. 422 p.
  55. Dmitrichev A.S., Kasatkin D.V., Klinshov V.V., Kirillov S.J., Maslennikov O.V., Shapin D.S., Nekorkin V.I. Nonlinear dynamical models of neurons: Review. Izvestiya VUZ. Applied Nonlinear Dynamics, 2018, vol. 26, no. 4, pp. 5–58 (in Russian). 
  56. Tikhonov A.N. Systems of differential equations containing small parameters in the derivatives. Matematicheskij sbornik, 1952, vol. 31(73), no. 3, pp. 575–586 (in Russian).
  57. Andronov A.A., Vitt A.A., Hajkin S.E. Teory of Oscillations, chapter X. M.: Fizmatgiz, 1959, pp. 727–891 (in Russian).
  58. Arnol’d V.I., Afraimovich V.S., Ilyashenko Yu.S., Shilnikov L.P. Bifurcation theory, chapter 4. Itogi nauki i tekhniki. Seriya «Sovremennye problemy matematiki. Fundamental’nye napravleniya», 1986, vol. 5, pp. 165–205 (in Russian).
  59. Fenichel N. Geometric singular perturbation theory for ordinary differential equation // SIAM Journal of Differential Equations. 1979. Vol. 31, no. 1. P. 53–98.
  60. Krupa M., Szmolyan P. Extending geometric singular perturbation theory to nonhyperbolic points – fold and canard points in two dimensions // SIAM J. Math. Anal. 2001. Vol. 33, no. 2. P. 286–314.
  61. Krupa M., Szmolyan P. Relaxation oscillation and canard explosion // Journal of Differential Equations. 2001. Vol. 174, no. 2. P. 312–368.
  62. Kuehn C. Multiple Time Scale Dynamics. Ser. Applied Mathematical Sciences (book 191), Springer, 2015. 814 p