Для цитирования:
Макеева А. А., Дмитричев А. С., Некоркин В. И. Циклы-утки и торы-утки в слабонеоднородном аннсамбле нейронов ФитцХью-Нагумо с возбуждающими связями // Известия вузов. ПНД. 2020. Т. 28, вып. 5. С. 524-546. DOI: 10.18500/0869-6632-2020-28-5-524-546
Циклы-утки и торы-утки в слабонеоднородном аннсамбле нейронов ФитцХью-Нагумо с возбуждающими связями
Цель настоящего исследования – изучить динамику слабонеоднородного ансамбля из трех нейронов ФитцХью–Нагумо с синаптическими возбуждающими связями, установить основные типы наблюдаемых в такой системе уточных решений и выявить области в пространстве параметров, отвечающие существованию этих решений. Методы. В данной работе для изучения динамики автономных систем применяются аналитические методы, основанные на геометрической теории сингулярных возмущений. Для изучения динамики неавтономных систем развивается приближенный подход и применяются методы численного исследования, в том числе построение отображений Пуанкаре. Результаты. Аналитически исследована динамика второго нейрона при условии, что первый находится в состоянии покоя. Показано существование в соответствующей системе решений, отвечающих генерации этим нейроном различных типов периодических, в том числе уточных, колебаний. Для исследования неавтономной системы, описывающей динамику третьего нейрона, развит приближенный подход, основанный на построении вспомогательной автономной системы. Показано существование в неавтономной системе третьего нейрона различных видов инвариантных торов, в том числе, торов-уток, отвечающих генерации этим нейроном разнообразных типов подпороговых и спайковых квазипериодических колебаний. Обнаружены торы-утки, отвечающие разнообразным типам спайко-подпороговых колебаний. Заключение. Рассмотрена динамика слабонеоднородного ансамбля из трех нейронов ФитцХью–Нагумо, уровни деполяризации которых линейно растут с их индексом, и соединенных последовательно посредством химических синапсов. Показано, что в ансамбле возможно существование торов-уток простой и сложной формы. Установлено, что торы-утки простой формы отвечают генерации нейронами ансамбля либо подпороговых, либо спайковых колебаний. В свою очередь, торы-утки сложной формы отвечают установлению в ансамбле режимов сложных спайко-подпороговых колебаний.
- Mountcastle V.B. The columnar organization of the neocortex // Brain. 1997. Vol. 120. P. 701–722.
- Zhou C., Zemanova L., Zamora G., Hilgetag C.C., Kurths J. Hierarchical organization unveiled by functional connectivity in complex brain networks // Phys. Rev. Lett. 2006. Vol. 97, no. 23. P. 238103-1-4.
- Sporns O., Honey C.J., Kotter R. Identification and classification of hubs in brain networks // PLoS ONE. 2007. Vol. 2, no. 10. P. e1049-1-14.
- Kaiser M., Hilgetag C.C. and Kotter R. Hierarchy and dynamics of neural networks // Front. Neuroinform. 2010. Vol 4. P. 112.
- Klinshov V.V., Teramae J., Nekorkin V.I., Fukai T. Dense neuron clustering explains connectivity statistics in cortical microcircuits // PLoS One. 2014. Vol. 9, no. 4. P. e94292-1-12.
- Okujeni S., Kandler S., Egert U. Mesoscale architecture shapes initiation and richness of spontaneous network activity // Journal of Neuroscience. 2017. Vol. 37, no. 14. P. 3972–3987.
- Shafi R. Understanding the hierarchical organization of large-scale networks based on temporal modulations in patterns of neural connectivity // Journal of Neuroscience. 2018. Vol. 38, no. 13. P. 3154–3156.
- Okujeni S., Egert U. Self-organization of modular network architecture by activity-dependent neuronal migration and outgrowth // eLife. 2019. Vol. 8. P. e47996-1-29.
- Gilly W.F., Gillette R., McFarlane M. Fast and slow activation kinetics of voltage-gated sodium channels in molluscan neurons // Journal of Neurophysiology. 1997. Vol. 77. P. 2373–84.
- Aman T.K., Raman I.M. Subunit dependence of Na channel slow inactivation and open channel block in cerebellar neurons // Biophysical Journal. 2007. Vol. 92, no. 6. P. 1938–1951.
- Hong E., Kazanci F.G., Prinz A.A. Different roles of related currents in fast and slow spiking of model neurons from two phyla // J Neurophysiol. 2008. Vol. 100, no. 4. P. 2048–2061.
- Milescu L.S., Yamanishi T., Ptak K., Smith J.C. Kinetic properties and functional dynamics of sodium channels during repetitive spiking in a slow pacemaker neuron // Journal of Neuroscience. 2010. Vol. 30, no. 36. pp. 12113–12127.
- Larsson H.P. What determines the kinetics of the slow afterhyperpolarization (sAHP) in neurons? // Biophys J. 2013. Vol. 104, no. 2. P. 281–283.
- Ye Z., Yu X., Houston C.M., Aboukhalil Z., Franks N.P., Wisden W., Brickley S.G. Fast and slow inhibition in the visual thalamus Is influenced by allocating GABAA receptors with different y subunits // Front. Cell. Neurosci. 2017. Vol. 11. P. 95.
- Nelson M.J., Bosch C., Venance L., Pouget P. Microscale inhomogeneity of brain tissue distorts electrical signal propagation // Journal of Neuroscience. 2013. Vol. 33, no. 7. P. 2821–2827.
- Lengler J., Jug F., Steger A. Reliable neuronal systems: The importance of heterogeneity // PLoS ONE. 2013. Vol. 8, no. 12. P. e80694.
- Baroni F., Mazzoni A. Heterogeneity of heterogeneities in neuronal networks // Front. Comput. Neurosci. 2014. Vol. 8. P. 161.
- Petitpre C., Wu H., Sharma A., et al. Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system // Nat. Commun. 2018. Vol. 9, no. 1. P. 3691.
- Okujeni S., Egert U. Inhomogeneities in network structure and excitability govern initiation and propagation of spontaneous burst activity // Front. Neurosci. 2019. Vol. 13. P. 543.
- Demirtas et al. Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics // Neuron. 2019. Vol. 101. P. 1181–1194.
- Markram H. The human brain project // Scientific American. 2012. Vol. 306, no. 6. P. 50–55.
- Van Essen D.C., Smith S.M., Barch D.M., Behrens T.E., Yacoub E., Ugurbil K., Wu-Minn HCP Consortium. The WU-Minn human connectome project: An overview // Neuroimage. 2013. Vol. 80. P. 62–79.
- Wilson H.R., Cowan J.D. Excitatory and inhibitory interactions in localized populations of model neurons // Biophysical Journal. 1972. Vol. 12, no. 1. P. 1–24.
- Zetterberg L.H., Kristiansson L., Mossberg K. Performance of a model for a local neuron population // Biological Cybernetics. 1978. Vol. 31, no. 1. P. 15–26.
- Sotero R.C., Trujillo-Barreto N.J., Iturria-Medina Y., Carbonell F., Jimenez J.C. Realistically coupled neural mass models can generate EEG rhythms // Neural Computation. 2007. Vol. 19, no. 2. P. 478–512.
- Deco G., Jirsa V.K., McIntosh A.R. Emerging concepts for the dynamical organization of restingstate activity in the brain // Nature Reviews Neuroscience. 2011. Vol. 12, no. 1. P. 43.
- Wendling F., Benquet P., Bartolomei F., Jirsa V. Computational models of epileptiform activity // Journal of Neuroscience Methods. 2016. Vol. 260. P. 233–251.
- Russo G., Jacques J., Slotine E. Physical Review E. 2010. Vol. 82. P. 041919-1-17.
- Maslennikov O.V., Kasatkin D.V., Rulkov N.F., Nekorkin V.I. Emergence of antiphase bursting in two populations of randomly spiking elements // Physical Review E. 2013. Vol. 88, no. 4. P. 042907.
- Schaub M.T., O’Clery N., Billeh Y.N., Delvenne J.-C., Lambiotte R., Barahona M. Graph partitions and cluster synchronization in networks of oscillators // Chaos. 2016. Vol. 26. P. 094821.
- Sorrentino F., Pecora L.M., Hagerstrom A.M., Murphy T.E., Roy R.. Complete characterization of the stability of cluster synchronization in complex dynamical networks // Sci. Adv. 2016. Vol. 2. P. e1501737
- Aminzare Z., Dey B., Davison E.N., Leonard N.E. Cluster synchronization of diffusively-coupled nonlinear systems: A contraction based approach // J. Nonlinear Sci. 2018 (on-line publication).
- Benoit E., Callot J.F., Diener F., and Diener M. Chasse au canard // Collect. Math. 1981. Vol. 31–32. P. 37.
- Kramer M.A., Traub R.D., Kopell N.J. New dynamics in cerebellar purkinje cells: Torus canards // Phys. Rev. Lett. 2008. Vol. 101. P. 068103-1-4.
- Rotstein H., Wechselberger M., Kopell N. Canard induced mixed-mode oscillations in amedial entorhinal cortex layer II stellate cell model // SIAM J. Appl. Dyn. Syst. 2008. Vol. 7. P. 1582–1611.
- Burke J., Desroches M., Barry A.M., Kaper T.J., Kramer M.A. A showcase of torus canards in neuronal bursters // J. Math. Neurosci. 2012. Vol. 2. no. 3.
- Mitry J., McCarthy M., Kopell N., Wechselberger M. Excitable neurons, firing threshold manifolds and canards // J. Math. Neurosci. 2013. Vol. 3. no. 12.
- Desroches M., Krupa M., Rodrigues S. Inflection, canards and excitability threshold in neuronal models // J. Math. Biol. 2013. Vol. 67. P. 989–1017.
- Krupa M., Vidal A., Clement F. A Network model of the periodic synchronization process in the dynamics of calcium concentration in GnRH neurons // J. Math. Neurosci. 2013. Vol. 3. no. 4.
- Vo T. Generic torus canards // Physica D. 2017. Vol. 356–357. P. 37–64.
- Zhan F., Liu S., Zhang X., Wang J., Lu B. Mixed-mode oscillations and bifurcation analysis in a pituitary model // Nonlinear Dyn. 2018. Vol. 94. P. 807–826
- Dick O.E. Mechanisms of dynamical complexity changes in patterns of sensory neurons under antinociceptive effect emergence // Neurocomputing. 2020. Vol. 378. P. 120–128.
- Fernandez-Garcia S., Vidal A. Symmetric coupling of multiple timescale systems with MixedMode Oscillations and synchronization // Physica D. 2020. Vol. 401. P. 132129-1-22.
- Baldemir H., Avitabile D., Tsaneva-Atanasova K. Pseudo-plateau bursting and mixed-mode oscillations in a model of developing inner hair cells // Commun. Nonlinear. Sci. Numer. Simulat. 2020. Vol. 80. P. 104979.
- Tchizawa K., Campbell S.A. On winding duck solutions in R4 // Proc. Neural Parallel Sci. Comput. 2002. Vol. 2. P. 315–318.
- Krupa M., Ambrosio B., and Aziz-Alaoui M. Weakly coupled two-slow–two-fast systems, folded singularities and mixed mode oscillations // Nonlinearity. 2014. Vol. 27. P. 1555.
- Ginoux J.-M., Llibre J. Canards existence in FitzHugh–Nagumo and Hodgkin–Huxley neuronal models // Math. Prob. Eng. 2015. Vol. 2015. P. 1–17.
- Davison E.N., Aminzare Z., Dey B., Leonard N.E. Mixed mode oscillations and phase locking in coupled FitzHugh–Nagumo model neurons // Chaos. 2019. Vol. 29. P. 033105-1-16.
- Eydam S., Franovic I., Wolfrum M. Leap-frog patterns in systems of two coupled FitzHugh– Nagumo units // Physical Review E. 2019. Vol. 99. P. 042207-1-9.
- Roberts K., Rubin J., Wechselberger M. Averaging, foided singularities and torus canards: Explaining transitions between bursting and spiking in a coupled neuron model // SIAM J. Appl. Dyn. Syst. 2015. Vol. 14. P. 1808–1844.
- Karamchandani A.J., Graham J.N., Riecke H. Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity // Chaos. 2018. Vol. 28. P. 043115-1-14.
- FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane // Biophys. J. 1961. Vol. 1, no. 6. P. 445–466.
- Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon // Proc. IRE. 1962. Vol. 50, no. 10. P. 2061–2070.
- Ermentrout B., Terman D. The Mathematical Foundations of Neuroscience. Ser. Interdisciplinary Applied Mathematics. Vol. 35. Springer, 2010. 422 p.
- Дмитричев А.С., Касаткин Д.В., Клиньшов В.В., Кириллов С.Ю., Масленников О.В., Щапин Д.С., Некоркин В.И. Нелинейные динамические модели нейронов: Обзор // Известия вузов. ПНД. 2018. Т. 26, № 4. С. 5–58.
- Тихонов А.М. Системы дифференциальных уравнений, содержащие малые параметры при производных // Математический сборник. 1952. Т. 31(73), № 3. С. 575–586.
- Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний, глава X. М.: Физматгиз, 1959. C. 727–891.
- Арнольд В.И., Афраймович В.С., Ильяшенко Ю.С., Шильников Л.П. Теория бифуркаций, глава 4 // Итоги науки и техники. Серия «Современные проблемы математики. Фундаментальные направления». 1986. Т. 5. C. 165–205.
- Fenichel N. Geometric singular perturbation theory for ordinary differential equation // SIAM Journal of Differential Equations. 1979. Vol. 31, no. 1. P. 53–98.
- Krupa M., Szmolyan P. Extending geometric singular perturbation theory to nonhyperbolic points – fold and canard points in two dimensions // SIAM J. Math. Anal. 2001. Vol. 33, no. 2. P. 286–314.
- Krupa M., Szmolyan P. Relaxation oscillation and canard explosion // Journal of Differential Equations. 2001. Vol. 174, no. 2. P. 312–368.
- Kuehn C. Multiple Time Scale Dynamics. Ser. Applied Mathematical Sciences (book 191), Springer, 2015. 814 p
- 2016 просмотров