For citation:
Bachurin D. V., Murzaev R. T. Delocalized nonlinear vibrational modes and their effect on the properties of binary NiTi alloy. Izvestiya VUZ. Applied Nonlinear Dynamics, 2026, vol. 34, iss. 1, pp. 98-115. DOI: 10.18500/0869-6632-003198, EDN: LKYLUV
Delocalized nonlinear vibrational modes and their effect on the properties of binary NiTi alloy
The purpose of this work is to investigate the behavior of stable one-component delocalized nonlinear vibrational modes in simple cubic titanium and nickel sublattices, as well as their influence on the properties of the binary NiTi alloy.
Methods. All calculations were performed using the molecular dynamics method with many-body interatomic potentials.
Results. Seventeen vibrational modes are shown to exhibit stable periodic oscillations. Most of them demonstrate a hard type of nonlinearity, where the frequency of atomic vibrations increases with amplitude. Stable modes are capable of accumulating energy in the range of 0.1–1.5 eV per atom in the titanium sublattice and 0.1–1.0 eV per atom in the nickel sublattice. Excitation of vibrational modes in the Ni and Ti sublattices leads to a decrease in specific heat for modes with hard type of nonlinearity and to an increase for modes with soft type of nonlinearity. The presence of modes leads to the emergence of positive compressive stresses, the magnitude of which is proportional to the atomic displacement vector.
Conclusion. The obtained results provide new insights into the complex behavior of vibrational modes and their impact on the properties of the binary NiTi alloy.
- Shi JC, Zeng LW, Chen JB. Two-dimensional localized modes in saturable quintic nonlinear lattices. Nonlinear Dyn. 2023;111(14):13415-13424. DOI: 10.1007/s11071-023-08558-9.
- Russell FM, Archilla JFR. Intrinsic localized modes in polymers and hyperconductors. Low Temp. Phys. 2022;48(12):1009-1014. DOI: 10.1063/10.0015109.
- Abbagari S, Houwe A, Akinyemi L, Bouetou TB. Modulated wave patterns brought by higher-order dispersion and cubic-quintic nonlinearity in monoatomic chains with anharmonic potential. Wave Motion. 2023;123:103220. DOI: 10.1016/j.wavemoti.2023.103220.
- Hall DA. Review nonlinearity in piezoelectric ceramics. Journal of Materials Science. 2001;36(19):4575-4601. DOI: 10.1023/A:1017959111402.
- Zhang YN, Wu JY, Jia LN, Qu Y, Yang YY, Jia BH, Moss DJ. Graphene oxide for nonlinear integrated photonics. Laser Photonics Reviews. 2023;17(3):2200512. DOI: 10.1002/lpor.202200512.
- Sun T, Shao LH, Zhang K. Anomalous heat conduction and thermal rectification in weak nonlinear lattices. Eur. Phys. J. B. 2023;96(7):99. DOI: 10.1140/epjb/s10051-023-00568-1.
- Ren BQ, Arkhipova AA, Zhang YQ, Kartashov YV, Wang HG, Zhuravitskii SA, Skryabin NN, Dyakonov IV, Kalinkin AA, Kulik SP, Kompanets VO, Chekalin SV, Zadkov VN. Observation of nonlinear disclination states. Light: Science and Applications. 2023;12(1):194. DOI: 10.1038/s41377-023-01235-x.
- Kang J, Liu T, Yan M, Yang DD, Huang XJ, Wei RS, Qiu JR, Dong GP, Yang ZM, Nori F. Observation of square-root higher-order topological states in photonic waveguide arrays. Laser and Photonics Reviews. 2023;17(6):2200499. DOI: 10.1002/lpor.202200499.
- Dolgov AS. On localization of oscillations in nonlinear crystal structure. Sov. Phys. Solid State. 1986;28:907-910.
- Sievers AJ, Takeno S. Intrinsic Localized Modes in Anharmonic Crystals. Phys. Rev. Lett. 1988;61(8):970-973. DOI: 10.1103/PhysRevLett.61.970.
- Dmitriev SV, Korznikova EA, Baimova YA, Velarde MG. Discrete breathers in crystals. Phys. Usp. 2016;59(5):446-461. DOI: 10.3367/UFNe.2016.02.037729.
- Dorignac J, Zhou J, Cambell DK. Discrete breathers in nonlinear Schrodinger hypercubic lattices with arbitrary power nonlinearity. Physica D. 2008;237(4):486-504. DOI: 10.1016/j.physd.2007.09.018.
- Gómez-Gardeñes J, Floría LM, Bishop AR. Discrete breathers in two-dimensional anisotropic nonlinear Schrodinger lattices. Physica D. 2006;216(1):31-43. DOI: 10.1016/j.physd.2005.12.017.
- Babicheva RI, Semenov AS, Soboleva EG, Kudreyko AA, Zhou K, Dmitriev SV. Discrete breathers in a triangular beta-Fermi-Pasta-Ulam-Tsingou lattice. Phys. Rev. E. 2021;103(5):052202. DOI: 10.1103/PhysRevE.103.052202.
- Korznikova EA, Morkina AY, Singh M, Krivtsov AM, Kuzkin VA, Gani VA, Bebikhov YV, Dmitriev SV. Effect of discrete breathers on macroscopic properties of the Fermi-Pasta-Ulam chain. Eur. Phys. J. B. 2020;93(7):123. DOI: 10.1140/epjb/e2020-10173-7.
- Kolesnikov ID, Shcherbinin SA, Bebikhov YV, Korznikova EA, Shepelev IA, Kudreyko AA, Dmitriev SV. Chaotic discrete breathers in bcc lattice. Chaos, Solitons and Fractals. 2024;178:114339. DOI: 10.1016/j.chaos.2023.114339.
- Bachurina OV. Linear discrete breather in fcc metals. Computational Materials Science. 2019;160:217-221. DOI: 10.1016/j.commatsci.2019.01.014.
- Bachurina OV. Plane and plane-radial discrete breathers in fcc metals. Modelling Simul. Mater. Sci. Eng. 2019;27(5):055001. DOI: 10.1088/1361-651X/ab17b7.
- Bachurina OV, Kudreyko AA. Two-dimensional discrete breathers in fcc metals. Computational Materials Science. 2020;182:109737. DOI: 10.1016/j.commatsci.2020.109737.
- Bachurina OV, Kudreyko AA. Two-component localized vibrational modes in fcc metals. Eur. Phys. J. B. 2021;94(11):218. DOI: 10.1140/epjb/s10051-021-00227-3.
- Haas M, Hizhnyakov V, Shelkan A, Klopov M, Sievers AJ. Prediction of high-frequency intrinsic localized modes in Ni and Nb. Physical Review B. 2011;84(14):144303. DOI: 10.1103/PhysRevB.84.144303.
- Krylova KA, Lobzenko IP, Semenov AS, Kudreyko AA, Dmitriev SV. Spherically localized discrete breathers in bcc metals V and Nb. Comp. Mater. Sci. 2020;180:109695. DOI: 10.1016/j.commatsci.2020.109695.
- Murzaev RT, Kistanov AA, Dubinko VI, Terentyev DA, Dmitriev SV. Moving discrete breathers in bcc metals V, Fe and W. Comp. Mater. Sci. 2015;98:88-92. DOI: 10.1016/j.commatsci.2014.10.061.
- Bachurina OV, Murzaev RT, Kudreyko AA, Dmitriev SV, Bachurin DV. Atomistic study of two-dimensional discrete breathers in hcp titanium. Eur. Phys. J. B. 2022;95(7):104. DOI: 10.1140/epjb/s10051-022-00367-0.
- Bachurina OV, Murzaev RT, Semenov AS, Korznikova EA, Dmitriev SV. Properties of moving discrete breathers in beryllium. Phys. Solid State. 2018;60(5):989-994. DOI: 10.1134/S1063783418050049.
- Murzaev RT, Bachurin DV, Korznikova EA, Dmitriev SV. Localized vibrational modes in diamond. Phys. Lett. A. 2017;381(11):1003-1008. DOI: 10.1016/j.physleta.2017.01.014.
- Voulgarakis NK, Hadjisavvas G, Kelires PC, Tsironis GP. Computational investigation of intrinsic localization in crystalline Si. Physical Review B. 2004;69(11):113201. DOI: 10.1103/PhysRevB.69.113201.
- Zakharov PV, Starostenkov MD, Dmitriev SV, Medvedev NN, Eremin AM. Simulation of the interaction between discrete breathers of various types in a Pt3Al crystal nanofiber. J. Exp. Theor. Phys. 2015;121(2):217-221. DOI: 10.1134/S1063776115080154.
- Zakharov PV, Korznikova EA, Dmitriev SV, Ekomasov EG, Zhou K. Surface discrete breathers in Pt3Al intermetallic alloy. Surface Science. 2019;679:1-5. DOI: 10.1016/j.susc.2018.08.011.
- Sakhnenko VP, Chechin GM. Symmetry selection rules in nonlinear dynamics of atomic systems. Doklady Physics. 1993;38:219-220.
- Sakhnenko VP, Chechin GM. Bushes of modes and normal vibrations in nonlinear dynamical systems with discrete symmetry. Dokl. Math. 1994;39(9):625-628.
- Chechin GM, Sakhnenko VP. Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results. Physica D. 1998;117(1-4):43-76. DOI: 10.1016/S0167-2789(98)80012-2.
- Daumont I, Dauxois T, Peyrard M. Modulational instability: First step towards energy localization in nonlinear lattices. Nonlinearity. 1997;10(3):617-630. DOI: 10.1088/0951-7715/10/3/003.
- Doi Y, Nakatani A, Yoshimura K. Modulational instability of zone boundary mode and band edge modes in nonlinear diatomic lattices. Phys. Rev. E. 2009;79(2):026603. DOI: 10.1103/PhysRevE.79.026603.
- Zhang XC, Shkurinov A, Zhang Y. Extreme terahertz science. Nature Photon. 2017;11(1):16-18. DOI: 10.1038/nphoton.2016.249.
- Hafez HA, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. J. Opt. 2016;18(9):093004. DOI: 10.1088/2040-8978/18/9/093004.
- Chechin GM, Ryabov DS, Zhukov KG. Stability of low-dimensional bushes of vibrational modes in the Fermi-Pasta-Ulam chains. Physica D. 2005;203(3-4):121-166. DOI: 10.1016/j.physd.2005.03.009.
- Chechin GM, Sizintsev DA, Usoltsev OA. Nonlinear atomic vibrations and structural phase transitions in strained carbon chains. Comp. Mater. Sci. 2017;138:353-367. DOI: 10.1016/j.commatsci.2017.07.004.
- Morkina AY, Singh M, Bebikhov YV, Korznikova EA, Dmitriev SV. Variation of the Specific Heat in the Fermi–Pasta–Ulam Chain due to Energy Localization. Phys. Solid State. 2023;64:446-454. DOI: 10.1134/S1063783422090050.
- Abdullina DU, Semenova MN, Semenov AS, Korznikova EA, Dmitriev SV. Stability of delocalized nonlinear vibrational modes in graphene lattice. Eur. Phys. J. B. 2019;92(11):249. DOI: 10.1140/epjb/e2019-100436-y.
- Upadhyaya A, Semenova MN, Kudreyko AA, Dmitriev SV. Chaotic discrete breathers and their effect on macroscopic properties of triangular lattice. Communications in Nonlinear Science and Numerical Simulation. 2022;112:106541. DOI: 10.1016/j.cnsns.2022.106541.
- Shcherbinin SA, Krylova KA, Chechin GM, Soboleva EG, Dmitriev SV. Delocalized nonlinear vibrational modes in fcc metals. Communications in Nonlinear Science and Numerical Simulation. 2022;104:106039. DOI: 10.1016/j.cnsns.2021.106039.
- Babicheva RI, Semenov AS, Shcherbinin SA, Korznikova EA, Kudreyko AA, Vivegananthan P, Zhou K, Dmitriev SV. Effect of the stiffness of interparticle bonds on properties of delocalized nonlinear vibrational modes in an fcc lattice. Phys. Rev. E. 2022;105(6):064204. DOI: 10.1103/PhysRevE.105.064204.
- Morkina AY, Bachurin DV, Dmitriev SV, Semenov AS, Korznikova EA. Modulational instability of delocalized modes in fcc copper. Materials. 2022;15(16):5597. DOI: 10.3390/ma15165597.
- Bachurina OV, Murzaev RT, Shcherbinin SA, Kudreyko AA, Dmitriev SV, Bachurin DV. Multi-component delocalized nonlinear vibrational modes in nickel. Modelling Simul. Mater. Sci. Eng. 2023;31:075009. DOI: 10.1088/1361-651X/acf14a.
- Bachurina OV, Murzaev RT, Shcherbinin SA, Kudreyko AA, Dmitriev SV, Bachurin DV. Delocalized nonlinear vibrational modes in Ni3Al. Communications in Nonlinear Science and Numerical Simulation. 2024;132:107890. DOI: 10.1016/j.cnsns.2024.107890.
- Ostropiko ES, Konstantinov AY. Stress-induced martensite formation under high strain rate loading in TiNi shape memory alloy. Lett. Mater. 2024;14(2):143-149. DOI: 10.48612/letters/2024-2-143-149.
- Rubanik VV, Bahrets DA, Rubanik jr. VV, Urban VI, Dorodeiko VG, Andreev VA, Chekan NM, Akula IP. Mechanical properties of TiNi medical alloy with bioinert coatings. Lett. Mater. 2023;13(4):353-356. DOI: 10.22226/2410-3535-2023-4-353-356.
- Resnina NN, Ivanov AM, Belyaev FS, Volkov AE, Belyaev SP. Simulation of recoverable strain variation during isothermal holding of the Ni51Ti49 alloy under various regimes. Lett. Mater. 2023;13(1):33-38. DOI: 10.22226/2410-3535-2023-1-33-38.
- Bachurina OV, Kudreyko AA, Dmitriev SV, Bachurin DV. Impact of delocalized nonlinear vibrational modes on the properties of NiTi. Phys. Lett. A. 2025;555:130769. DOI: 10.1016/j.physleta.2025.130769.
- Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, Veld PJI, Kohlmeyer A, Moore SG, Nguyen TD, Shan R, Stevens MJ, Tranchida J, Trott C, Plimpton SJ. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications. 2022;271:108171. DOI: 10.1016/j.cpc.2021.108171.
- LAMMPS [Electronic resource]. Available from: http://lammps.sandia.gov.
- Kim YK, Kim HK, Jung WS, Lee BJ. Development and application of Ni-Ti and Ni-Al-Ti 2NN-MEAM interatomic potentials for Ni-base superalloys. Comp. Mater. Sci. 2017;139:225-233. DOI: 10.1016/j.commatsci.2017.08.002.
- Singh M, Morkina AY, Korznikova EA, Dubinko VI, Terentiev DA, Xiong DX, Naimark OB, Gani VA, Dmitriev SV. Effect of discrete breathers on the specific heat of a nonlinear chain. J. Nonlinear Sci. 2021;31(1):12. DOI: 10.1007/s00332-020-09663-4.
- Naumov EK, Bebikhov YV, Ekomasov EG, Soboleva EG, Dmitriev SV. Discrete breathers in square lattices from delocalized nonlinear vibrational modes. Phys. Rev E. 2023;107(3):034214. DOI: 10.1103/PhysRevE.107.034214.
- Bachurin DV, Murzaev RT, Abdullina DU, Semenova MN, Bebikhov YV, Dmitriev SV. Chaotic discrete breathers in bcc lattice: Effect of the first- and second interactions. Physica D. 2024;470:134344. DOI: 10.1016/j.physd.2024.134344.
- Bebikhov YV, Naumov EK, Semenova MN, Dmitriev S V. Discrete breathers in a β-FPUT square lattice from in-band external driving. Communications in Nonlinear Science and Numerical Simulation. 2024;132:107897. DOI: 10.1016/j.cnsns.2024.107897.
- Shcherbinin SA, Bebikhov YV, Abdullina DU, Kudreyko AA, Dmitriev S V. Delocalized nonlinear vibrational modes and discrete breathers in a body centered cubic lattice. Communications in Nonlinear Science and Numerical Simulation. 2024;135:108033. DOI: 10.1016/j.cnsns.2024.108033.
- Shepelev IA, Soboleva EG, Kudreyko AA, Dmitriev S V. Influence of the relative stiffness of second-neighbor interactions on chaotic discrete breathers in a square lattice. Chaos, Solitons and Fractals. 2024;183:114885. DOI: 10.1016/j.chaos.2024.114885.
- Shcherbinin SA, Kazakov AM, Bebikhov YV, Kudreyko AA, Dmitriev S V. Delocalized nonlinear vibrational modes and discrete breathers in β-FPUT simple cubic lattice. Phys. Rev. E. 2024;109(1):014215 DOI: 10.1103/PhysRevE.109.014215.
- 406 reads