ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Kuznetsov A. P., Popova E. S., Seleznev E. P., Stankevich N. V. Doubling and destruction of the tri-frequencies torus in the nonlinear oscillator under quasi-periodic exitation: experiment. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 5, pp. 31-39. DOI: 10.18500/0869-6632-2013-21-5-31-39

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 126)
Article type: 

Doubling and destruction of the tri-frequencies torus in the nonlinear oscillator under quasi-periodic exitation: experiment

Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Popova Elena Sergeevna, Saratov State University
Seleznev Evgeny Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Stankevich Nataliya Vladimirovna, National Research University "Higher School of Economics"

In present paper nonlinear oscillator driving by external force in a form of three harmonic signals with irrational ratios of the frequencies and the map of various dynamical regimes on the parameter plane are presented. The feature of tri-frequencies torus doubling and destruction are investigated.

  1. Pikovsky A, Rosenblum M, Kurts Yu. Synchronization. A fundamental nonlinear phenomenon. Moscow: Tehnosphera; 2003. 508 p. (In Russian).
  2. Loskutov AY, Mikhailov AS. Fundamentals of complex systems theory. Мoscow-Izhevsk: ICS; 2007. 620 p. (In Russian).
  3. Landa PS. Self-oscillations in systems with a finite number of degrees of freedom. Moscow: Nauka; 1980. 360 p. (In Russian).
  4. Anishchenko Sun, Astakhov VV, Vadivasova TE, Strelkova GI. Synchronization of regular, chaotic and stochastic fluctuations. Мoscow-Izhevsk: ICS; 2008. 144 p. (In Russian).
  5. Landau LD. To the problem of turbulence. Doklady Academy of Sciences USSR. 1944;44:339–342.
  6. Ruelle D, Takens F. On the nature of turbulence. Comm. Math. Phys. 1971;20(3):167–192.
  7. Vitolo R, Broer H, Simo C. Routes to chaos in the Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms. Nonlinearity. 2010;23(8):1919–1947. DOI: 10.1088/0951-7715/23/8/007.
  8. Vitolo R. Bifurcations of attractors in 3D dieomorphisms: A study in experimental mathematics. PhD thesis. 2003.
  9. Grebogi C, Ott E, Pelikan S, Yorke JA. Strange attractors that are not chaotic. Physica D. 1984;13(1,2):261–268. DOI: 10.1016/0167-2789(84)90282-3.
  10. Kuznetsov AP, Stankevich NV. A simple autonomous quasiperiodic self-oscillator. Communications in Nonlinear Science and Numerical Simulation. 2010;15(6):1676–1681. DOI: 10.1016/J.CNSNS.2009.06.027.
  11. Kuznetsov SP, Pikovsky AU, Foidel U. Strange non-chaotic attractor. Nonlinear waves 2004. Ed. Gaponov-Grekhov AV, Neorakin VI. Nizhny Novgorod: IAP RAS; 2005. 544 p. (In Russian).
  12. Bezruchko BP, Kuznetsov SP, Pikovsky AS, Feudel U, Seleznev EP. On Dynamics of nonlinear systems under external quasi-periodic force near the terminal point of the torus-doubling bifurcation curve. Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(6):3–19.
  13. Bezruchko BP, Kuznetsov SP, Seleznev EP. Experimental observation of dynamics near the torus-doubling terminal critical point. Phys. Rev. E. 2000;62(6):7828–7830. DOI: 10.1103/PhysRevE.62.7828.
  14. Seleznev EP, Zaharevich AM. Control parameter space of a nonlinear oscillator under quasiperiodic driving. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(6):17–35. DOI: 10.18500/0869-6632-2009-17-6-17-35.
  15. Anishchenko VS, Safonova MA, Feudel U, Kurths J. Bifurcation and transition to chaos through three-dimensional tori. Int. J. of Bifurcation and Chaos. 1994;4(3):595–607. DOI: 10.1142/S0218127494000423.
  16. Popova ES. Influence of fluctuations on evolution of three-dimensional torus in nonautonomous system. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(2):98–103. DOI: 10.18500/0869-6632-2012-20-2-98-103.
  17. Kim S, Ostlund S. Simultaneous rational approximations in the study of dynamical systems. Phys. Rev. A. 1986;34(4):3426–3434. DOI: 10.1103/physreva.34.3426.
  18. Linsay PS, Cumming AW. Three-frequency quasiperiodisity, phase locking and the onset of chaos. Physica D. 1989;40:196–217.
  19. Moon FC, Holmes WT. Double Poincare sections of a quasi-periodically forced, chaotic attractor. Physics Letters A. 1985;111(4):157–160. DOI: 10.1063/1.165815.
  20. Kuznetsov AP., Popova EU, Seleznev EP, Stankevich NV. A DIAGNOSTIC APPROACH FOR THE MULTIFREQUENCY TORUS. Vestnik SSTU. 2013;1(1):33–39.
  21. Anishchenko VS, Nikolaev SM. Generator of quasi-periodic oscillations featuring two-dimensional torus doubling bifurcations. Technical Physics Letters. 2005;31(10):853–855. DOI: 10.1134/1.2121837.
Short text (in English):
(downloads: 59)