Для цитирования:
Кузнецов А. П., Попова Е. С., Селезнев Е. П., Станкевич Н. В. Удвоения и разрушение трехчастотных торов в нелинейном осцилляторе с квазипериодическим воздействием: эксперимент // Известия вузов. ПНД. 2013. Т. 21, вып. 5. С. 31-39. DOI: 10.18500/0869-6632-2013-21-5-31-39
Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 134)
Язык публикации:
русский
Тип статьи:
Научная статья
УДК:
517.9
Удвоения и разрушение трехчастотных торов в нелинейном осцилляторе с квазипериодическим воздействием: эксперимент
Авторы:
Кузнецов Александр Петрович, Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)
Попова Елена Сергеевна, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Селезнев Евгений Петрович, Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)
Станкевич Наталия Владимировна, Высшая школа экономики
Аннотация:
В работе с помощью методики «кратного» сечения Пуанкаре экспериментально исследован нелинейный контур с внешним воздействием в виде суммы трех гармонических составляющих с иррациональными значениями частот. Построены экспериментальные карты динамических режимов на плоскостях параметров амплитуд внешнего воздействия. Изучены особенности разрушения трехчастотного тора, его удвоения.
Ключевые слова:
Список источников:
- Пиковский А., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003. 508 с.
- Лоскутов А.Ю., Михайлов А.С. Основы теории сложных систем. М.; Ижевск: Институт компьютерных исследований, 2007. 620 с.
- Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 1980. 360 с.
- Анищенко В.С., Астахов В.В., Вадивасова Т.Е., Стрелкова Г.И. Синхронизация регулярных, хаотических и стохастических колебаний. М.; Ижевск: Институт компьютерных исследований, 2008. 144 с.
- Ландау Л.Д. К проблеме турбулентности // ДАН СССР. 1944. Т. 44. С. 339.
- Ruelle D., Takens F. On the nature of turbulence // Comm. Math. Phys. 1971. Vol. 20. P. 167.
- Vitolo R., Broer H., Simo C. Routes to chaos in the Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms // Nonlinearity. 2010. Vol. 23. P. 1919.
- Vitolo R. Bifurcations of attractors in 3D di?eomorphisms: A study in experimental mathematics. PhD thesis, 2003. http://dissertations.ub.rug.nl/faculties/science/2003/r.vitolo/?pLanguag...
- Grebogi C., Ott E., Pelikan S., Yorke J.A. Strange attractors that are not chaotic // Physica D. 1984. Vol. 13, № 1, 2. P. 261.
- Kuznetsov A.P., Stankevich N.V. A simple autonomous quasiperiodic self-oscillator // Communications in Nonlinear Science and Numerical Simulation. 2010. Vol. 15. P. 1676.
- Кузнецов С.П., Пиковский А.С., Фойдель У. Странный нехаотический аттрактор // В кн.: Нелинейные волны’2004/ Под ред. А.В. Гапонова-Грехова и В.И. Некоркина. Нижний Новгород: ИПФ РАН, 2005. С. 484.
- Безручко Б.П., Кузнецов С.П., Пиковский А.С., Фойдель У., Селезнев Е.П. О динамике нелинейных систем под внешним квазипериодическим воздействием вблизи точки окончания линии бифуркации удвоения тора // Изв. вузов. Прикладная нелинейная динамика. 1997. Т. 5, № 6. С. 3.
- Bezruchko B.P., Kuznetsov S.P., Seleznev E.P. Experimental observation of dynamics near the torus-doubling terminal critical point // Phys. Rev. E. 2000. Vol. 62, № 6. P. 7828.
- Селезнев Е.П., Захаревич А.М. Структура пространства управляющих параметров нелинейного осциллятора при квазипериодическом воздействии // Изв. вузов. Прикладная нелинейная динамика. 2009. Т. 17, № 6. С. 17.
- Anishchenko V.S., Safonova M.A., Feudel U., Kurths J. Bifurcation and transition to chaos through three-dimensional tori // Int. J. of Bifurcation and Chaos. 1994 Vol. 4, № 3. P. 595.
- Попова Е.С. Влияние флуктуаций на эволюцию трехмерного тора в неавтономной системе // Изв. вузов. Прикладная нелинейная динамика. 2012. Т. 20, № 2. С. 98.
- Kim S. Simultaneous rational approximations in the study of dynamical systems / S. Kim, S. Ostlund // Phys. Rev. A. 1986. Vol. 34, № 4. P. 3426.
- Linsay P.S., Cumming A.W. Three-frequency quasiperiodisity, phase locking and the onset of chaos // Physica D. 1989. Vol. 40. P. 196.
- Moon F.C., Holmes W.T. Double Poincare sections of a quasi-periodically forced, ?chaotic attractor // Physics Letters A. 1985. Vol. 111. Issue 4. P. 157.
- Кузнецов А.П., Попова Е.С., Селезнев Е.П., Станкевич Н.В. Методика диагностики многочастотных торов в эксперименте // Вестник СГТУ. 2013. № 1.
- Анищенко В.С., Николаев С.М. Генератор квазипериодических колебаний. Бифуркация удвоения двумерного тора // Письма в ЖТФ. 2005. Том 31. С. 884.
Поступила в редакцию:
23.04.2013
Принята к публикации:
16.07.2013
Опубликована:
31.12.2013
Краткое содержание:
(загрузок: 64)
- 1991 просмотр