ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Smirnov D. A., Bodrov M. B., Bezruchko B. P. Estimation of coupling between oscillators from time series via phase dynamics modeling: limits of method’s applicability. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 6, pp. 79-92. DOI: 10.18500/0869-6632-2004-12-6-79-92

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
503.18

Estimation of coupling between oscillators from time series via phase dynamics modeling: limits of method’s applicability

Autors: 
Smirnov Dmitrij Alekseevich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Bodrov Maksim Borisovich, Saratov State University
Bezruchko Boris Petrovich, Saratov State University
Abstract: 

The problem of determination of the presence and directionality of coupling between oscillatory systems only from their time realizations is considered. One of the efficient «nonlinear» approaches to its solution is based on calculation of the phases of oscillations from the observed signals and construction of a model map describing the phase dynamics, whose properties allow coupling characterization. The approach was justified theoretically for weakly nonlinear and weakly coupled phase oscillators under the influence of normal white noise. In this work, we find out practical limits of applicability of the approach in numerical experiment (for different properties of noise and different values of phase nonlinearity and coupling intensity). Applicability of the employed working formulas for coupling estimators in a wide range of situations is shown.

Key words: 
Acknowledgments: 
The work was supported by the RFBR (05-02-16305), programm ВRНЕ (REC-006), grant from the President of the Russian Federation (МК-1067.2004.2) and Foundation for the Promotion of Russian Science.
Reference: 
  1. Palus M, Stefanovska А. Direction of coupling from phases of interacting oscillators: An information-theoretic approach. Phys. Rev. Е. 2003;67(5): 055201. DOI: 10.1103/PhysRevE.67.055201.
  2. Kazantsev VB, Nekorkin VI, Makarenko VI, Llinas R. Olivo-cerebellar clusterbased universal control system. PNAS. 2003;100(22):13064–13068. DOI: 10.1073/pnas.1635110100.
  3. Sosnovtseva ОК, Paviov AN, Mosekilde E, Holstein-Rathlou NH. Bimodal oscillations ш nephron autoregulation. Phys. Rev. Е. 2002;66(6):061909. DOI: 10.1103/PhysRevE.66.061909.
  4. Jevrejeva S, Moore J, Grinsted А. Influence оf the Arctic Oscillation аnd Е1 Nino, Southern Oscillation (ENSO) оn ice conditions in the Baltic Sea: The wavelet approach. Journal оf Geophysical Research. 2003;108(21):4677. DOI: 10.1029/2003JD003417.
  5. Bezruchko B, Ponomarenko V, Rosenblum MG, Pikovsky AS. Characterizing direction оf coupling from experimental observations. Chaos. 2003;13(1):179–184. DOI: 10.1063/1.1518425.
  6. Schiff SJ, So P, Chang T, Burke RE, Sauer Т. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys. Rev. E. 1996;54(6):6708–6724. DOI: 10.1103/physreve.54.6708.
  7. Arnhold J, Lehnertz K, Grassberger P, Elger CE. A robust method for detecting interdependences: application to intracranially recorded ВЕС. Physica D. 1999;134(4):419–430. DOI: 10.1016/S0167-2789(99)00140-2.
  8. Meeren НКМ, Pijn JPM, Luijtelaar ELJ M, Coenen ALM, Lopes SЕН. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in гаts. J. Neurosci. 2002;22(4):1480–1495. DOI: 10.1523/JNEUROSCI.22-04-01480.2002.
  9. Feldmann U, Bhattacharya J. Predictability improvement аs аn asymmetrical measure of interdependence in bivariate time series. Int. J Bifurc. Chaos. 2004;14(2):504–514. DOI:10.1142/S0218127404009314.
  10. Mormann Е, Kreuz T, Rieke C, Andrzejak RG, Kraskov А, David P, Eiger C, Lehnertz K. On the predictability оf epileptic seizures. Clin. Neurophysiol. 2005;116(3):569–587. DOI: 10.1016/j.clinph.2004.08.025.
  11. Quian QR, Kraskov А, Kreuz Т, Grassberger Р. Performance оf different synchronization measures in real data: а case study оп electroencephalographic signals. Phys. Rev. Е. 2002;65(4):041903. DOI: 10.1103/PhysRevE.65.041903.
  12. Rosenblum MG, Pikovsky AS. Detecting direction оf coupling in interacting oscillators. Phys. Rev. Е. 2001;64(4):045202. DOI: 10.1103/PhysRevE.64.045202.
  13. Kaplan AY. Nonstationarity of EEG: methodological and experimental analysis. Phys. Usp. 1998;29(3):35–55.
  14. Smirnov DA, Bezruchko BP. Estimation of interaction strength and direction from short and noisy time series. Phys. Rev. E. 2003;68:046209. DOI: 10.1103/PhysRevE.68.046209.
  15. Rosenblum MG, Pikovsky AS, Kurths J, Schafer C, Tass P. A. Phase synchronization: from theory to data analysis. Neuro-informatics.  In: Moss F, Gielen S, editors. Handbook of Biological Physics. New York: Elsevier Science. 2001;4:279–321.
  16. Anishchenko VS, Vadivasova TE, Strelkova GI. Instantaneous phase method in studing chaotic and stochastic oscillations and its limitations. Fluctuation аnd Noise Letters. 2004;4(1):L219. DOI:10.1142/S0219477504001835.
  17. Pikovsky AS, Rosenblum MG. Kurths J. Int. 1. Bifurc. Chaos. 2000;10(10):2291–2305. DOI:10.1142/S0218127400001481.
  18. Rosenblum MG, Cimponeriu L, Bezerianos А, Patzak А, Mrowka R. Identification оf coupling direction: application 10 cardiorespiratory interaction. Physical Review E. 2002;65:041909. DOI: 10.1103/PhysRevE.65.041909.
  19. Mormann Е, Lehnertz K, David P, Elger CE. Mean phase coherence  аs measure for phase synchronization and its application to the EEG оf epilepsy patients. Physica D. 2000;144(3-4):358–369. DOI: 10.1016/S0167-2789(00)00087-7.
  20. Bezruchko B, Ponomarenko V, Rosenblum MG, Pikovsky AS. Characterizing direction оf coupling from experimental observations. Woodbury: Chaos. 2003;13(1):179–184. DOI: 10.1063/1.1518425.
  21. Schreiber Т, Schmitz А. Improved surrogate data for nonlinearity tests. Physical Review Letters. 1997;77(4):635–638. DOI: 10.1103/PhysRevLett.77.635.
  22. Huang NE, Shen Z, Long SR. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. London: The Royal Society. 1998;454:903–998. DOI: 10.1098/rspa.1998.0193.
Received: 
22.11.2004
Accepted: 
18.03.2005
Published: 
15.06.2005