ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kuznetsov A. P., Stankevich N. V., Turukina L. V. Features of the synchronization picture by the pulses in the system with 3-dimensional phase space by the example of the Ressler system. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 6, pp. 43-53. DOI: 10.18500/0869-6632-2006-14-6-43-53

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 120)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Features of the synchronization picture by the pulses in the system with 3-dimensional phase space by the example of the Ressler system

Autors: 
Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Stankevich Natalija Vladimirovna, National Research University "Higher School of Economics"
Turukina L. V., Saratov State University
Abstract: 

Features of the synchronization picture in the system which limit cycle lied in three-dimensional phase space are considered. By the example of Ressler system with the periodic sequence of δ-Functions it is shown, that the synchronization picture essentially depends on a direction of the external force. Features of the synchronization tongues are found.

Key words: 
Reference: 
  1. Berge P, Pomeau Y, Vidal C. L’Ordre Dans Le Chaos. Paris: Hermann; 1988. 353 p.
  2. Schuster G. Deterministic chaos. New York: Weinheim. 1988. 240 p.
  3. Ott E. Chaos in Dynamical Systems. Cambridge: Cambridge University Press; 1993. 385 p.
  4. Anishchenko VS. Complex fluctuations in simple systems. Moscow: Nauka; 1990. 312 p. (In Russian).
  5. Winfree AT. The Geometry of Biological Time. Berlin: Springer; 1980. 779 p.
  6. Caldas IL, Tasson H. Limit cycles of periodically forced oscillations. Phys. Lett, 1989;135:264–266.
  7. Steeb WH, Kunick A. Chaos in limit-cycle systems with external periodic excitation. Int. J of Nonlinear Mechanics, 1987;22(5):349–361. DOI: 10.1016/0020-7462(87)90028-X.
  8. Pikovsky AS, Rosenblum MG, Kurths J. Synchronization: a universal concept in nonlinear sciences. Cambridge: University Press; 2001. 433 p.
  9. Pikovsky AS, Rosenblum MG, Osipov GV, Kurths J. Phase synchronization of chaotic oscillators by external driving. Physica. 1997;104(3-4):219–238. DOI: 10.1016/S0167-2789(96)00301-6.
  10. Gonzalez DL, Piro O. Chaos in a nonlinear driven oscillator with exact solution. Phys. Rev. Lett. 1983;50(12):870–872. DOI: 10.1103/PhysRevLett.50.870.
  11. Ding EJ. Analytic treatment of periodic orbit systematics for a nonlinear driven oscillator. Phys Rev A Gen Phys. 1986;34(4):3547–3550. DOI: 10.1103/physreva.34.3547.
  12. Ding EJ. Analytic treatment of a driven oscillator with a limit cycle. Phys Rev A Gen Phys. 1987;35(6):2669–2683. DOI: 10.1103/physreva.35.2669.
  13. Ding EJ. Structure of parameter space for a prototype nonlinear oscillator. Phys. Rev. 1987;36(3):1488–1491. DOI: 10.1103/PHYSREVA.36.1488.
  14. Ding EJ. Structure of the parameter space for the van der Pol oscillator. Physica Scripta. 1988;38(1):9–16. DOI: 10.1088/0031-8949/38/1/001.
  15. Ullmann K, Caldas IL. Transitions in the parameter space of a periodically forced dissipative system. Chaos, Solitons & Fractals. 1996;7(11):1913–1921. DOI: 10.1016/S0960-0779(96)00019-7.
  16. Keener JP, Glass L. Global bifurcation of a periodically forced nonlinear oscillator. J. Math. Biology, 1984;21(2):175–190. DOI: 10.1007/BF00277669.
  17. Glass L, Sun J. Periodic forcing of a limit-cycle oscillator: Fixed points, Arnold tongues, and the global organization of bifurcations. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994;50(6):5077–5084. DOI: 10.1103/physreve.50.5077.
  18. Ding EJ, Hemmer PC. Exact treatment of mode locking for a piecewise linear map. Journal of Statistical Physics. 1987;46(1-2):99–110. DOI: 10.1007/BF01010333.
  19. Glass L. et. all. Global bifurcations of a periodically forced biological oscillator. Phys. Rev. A. 1983;29(3):1348–1357. DOI: 10.1103/PHYSREVA.29.1348.
  20. Kuznetsov AP, Turukina LV. Kicked van der pol oscillator: from differential equation to maps. Izvestiya VUZ. Applied Nonlinear Dynamics. 2001;9(6):69–82.
  21. Kuznetsov AP, Turukina LV. Synchronization Of Self-Oscillating Van Der Pol - Duffing System By The Short Pulses. Izvestiya VUZ. Applied Nonlinear Dynamics. 2004;12(5):16–31.
  22. Kuznetsov SP. Dynamic chaos. Moscow: Fizmatlit; 2001. 296 p. (In Russian).
Received: 
02.12.2005
Accepted: 
10.07.2006
Published: 
29.12.2006
Short text (in English):
(downloads: 63)