ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Yusipov I. I., Laptyeva T. V., Pirova A. J., Meyerov I. B., Ivanchenko M. V. Few particle diffusion in localizing potentials: chaos and regularity. Izvestiya VUZ. Applied Nonlinear Dynamics, 2017, vol. 25, iss. 1, pp. 52-63. DOI: 10.18500/0869-6632-2017-25-1-52-63

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 176)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
530.182

Few particle diffusion in localizing potentials: chaos and regularity

Autors: 
Yusipov Igor I., Lobachevsky State University of Nizhny Novgorod
Laptyeva Tatjana Vladimirovna, Lobachevsky State University of Nizhny Novgorod
Pirova Anna Jurevna, Lobachevsky State University of Nizhny Novgorod
Meyerov Iosif Borisovich, Lobachevsky State University of Nizhny Novgorod
Ivanchenko Mihail Vasilevich, Lobachevsky State University of Nizhny Novgorod
Abstract: 

In this work we study the dynamics of wave packets propagation of a few interacting quantum particles with different types of spatial inhomogeneity. Single particle or, equivalently, many noninteracting particles are localized in the case of spatial disorder, and experience localization–delocalization transition in the case of quasi-periodic inhomogeneity. In the other limiting case of many interacting particles, the problem is solved in the mean-field approximation, which leads to discrete nonlinear Schrodinger equation. There localization is destroyed due to dynamical chaos inherent to nonlinearity. It results in wave packets subdiffusion, their self-similarity in the asymptotic limit, the dependence of the subdiffusion rate from the nonlinearity order. We demonstrate that analogous features emerge in disordered lattice even for two quantum particles due to quantum chaos, much away from the validity of the mean-field approximation. The subdiffusion exponent decreases with the increasing order of interaction, as found in nonlinear equations. On the contrary, in the case of a quasi-periodic potential we find regular quantum dynamics and almost ballistic wave packets propagation. Wherein a small additive of disorder destroys the regular quantum dynamics. 

Reference: 
  1. Anderson P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958. Vol. 109. P. 1492.
  2. Aubry S., Andre G. Analyticity breaking and Anderson localization in incommensurate lattices. Proc. Israel Phys. Soc. 1980. Vol. 3. P. 133.
  3. Kramer B. and MacKinnon A. Localization: theory and experiment. Rep. Prog. Phys. 1993. Vol. 56. P. 1469.
  4. Evers F. and Mirlin A.D. Anderson transitions. Rev. Mod. Phys. 2008. Vol. 80. P. 1355.
  5. Schwartz T., et al. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature. 2007. Vol. 446. P. 52.
  6. Lahini Y., et al. Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices. Phys. Rev. Lett. 2008. Vol. 100. 013906.
  7. Hu H., et al. Localization of ultrasound in a three-dimensional elastic network. Nature Phys. 2008. Vol. 4. P. 945.
  8. Billy J., et al. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature. 2008. Vol. 453. P. 891.
  9. Roati G., et al. Anderson localization of a non-interacting Bose–Einstein condensate. Nature. 2008. Vol. 453. P. 895.
  10. Laptyeva T.V., Ivanchenko M.V. and Flach S. Nonlinear lattice waves in heterogeneous media. J. Phys. A: Math. Theor. 2014. Vol. 47. 493001.
  11. Basko D.M., Aleiner I.L. and Altshuler B.L. Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 2006. Vol. 321. P. 1126.
  12. Aleiner I.L., Altshuler B.L., and Shlyapnikov G.V. A finite-temperature phase transition for disordered weakly interacting bosons in one dimension. Nat. Phys. 2010. Vol. 6. P. 900.
  13. Michal V.P., Altshuler B.L. and Shlyapnikov G.V. Delocalization of weakly interacting bosons in a 1D quasi-periodic potential. Phys. Rev. Lett. 2014. Vol. 113. 045304.
  14. Dorokhov O.N. Localization of two bound particles in a one-dimensional random potential. Sov. JETP. 1990. Vol. 71. P. 360 (in Russian: Дорохов О.Н. Локализация двух связанных частиц в одномерном случайном потенциале// ЖЭТФ. 1990. Т. 98 (2). С. 646–654).
  15. Shepelyansky D.L. Coherent Propagation of Two Interacting Particles in a Random Potential. Phys. Rev. Lett. 1994. Vol. 73. P. 2607.
  16. Imry Y. Coherent Propagation of Two Interacting Particles in a Random Potential. Europhys. Lett. 1995. Vol. 30. P. 405.
  17. Roemer R.A. and Schreiber M. No enhancement of the localization length for two interacting particles in a random potential. Phys. Rev. Lett. 1997. Vol. 78. P. 515.
  18. Frahm K., Muller-Groeling A., Pichard J.L., and Weinmann D. Scaling in interactionassisted coherent transport. Europhys. Lett. 1995. Vol. 31. P. 169.
  19. Frahm K.M. Interaction induced delocalization of two particles: large system size  calculations and dependence on interaction strength. Eur. Phys. J. B. 1999. Vol. 10. P. 371.
  20. Krimer D.O., Khomeriki R., and Flach S. Two interacting particles in a random potential. JETP Lett. 2011. Vol. 94. P. 406–412.
  21. Shepelyansky D.L. Two interacting particles in the Harper model. Phys. Rev. B. 1996. Vol. 54. 14896.
  22. Eilmes A., Grimm U., Romer R.A., Schreiber M. Two interacting particles at a metal-insulator transition. Eur. Phys. J. B. 1999. Vol. 8. P. 547.
  23. Evangelou S.N., Katsanos D.E. Two interacting electrons in a quasi-periodic chain. Phys. Rev. B. 1997. Vol. 56. P. 12797.
  24. Flach S., Ivanchenko M., and Khomeriki R. Correlated metallic two-particle bound states in quasiperiodic chains. Europhys. Lett. 2012. Vol. 98. 66002.
  25. Frahm K.M. and Shepelyansky D.L. Freed by interaction kinetic states in the Harper model. Eur. Phys. J. B. 2015. Vol. 88. P. 337.
  26. Ivanchenko M.V., Laptyeva T.V., and Flach S. Quantum chaotic subdiffusion in random potentials. Phys. Rev. B. 2014. Vol. 89. 060301(R).
  27. Krimer D.O. and Flach S. Interaction-induced connectivity of disordered two-particle states. Phys. Rev. B. 2015. Vol. 91. 100201(R).
  28. Dalfovo F., Giorgini S., Pitaevskii L., and Stringari S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 1999. Vol. 71. P. 463.
  29. Bloch I., Dalibard J., and Zwerger W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008. Vol. 80. P. 885.
  30. Molina M.I. Transport of localized and extended excitations in a nonlinear Anderson model. Phys. Rev. B. 1998. Vol. 58. 12547.
  31. Pikovsky A.S. and Shepelyansky D.L. Destruction of Anderson Localization by a Weak Nonlinearity. Phys. Rev. Lett. 2008. Vol. 100. 094101.
  32. Flach S., Krimer D.O. and Skokos Ch. Universal Spreading of Wave Packets in Disordered Nonlinear Systems. Phys. Rev. Lett. 2009. Vol. 102. 024101.
  33. Laptyeva T.V., et al. The crossover from strong to weak chaos for nonlinear waves in disordered systems. EPL. 2010. Vol. 91. 30001.
  34. Bodyfelt J.D., et al. Nonlinear waves in disordered chains: Probing the limits of chaos and spreading. Phys. Rev. E. 2011, Vol. 84. 016205.
  35. Pikovsky A., Fishman S. Scaling properties of weak chaos in nonlinear disordered lattices. Phys. Rev. E. 2011. Vol. 83. 025201(R).
  36. Larcher M., Laptyeva T.V., Bodyfelt J.D., Dalfovo F., Modugno M., and Flach S. Subdiffusion of nonlinear waves in quasi-periodic potentials. New J. Phys. 2012, Vol. 14. 103036.
  37. Skokos Ch., Gkolias I., and Flach S. Nonequilibrium Chaos of Disordered Nonlinear Waves. Phys. Rev. Lett. 2013. Vol. 111. 064101.
  38. Laptyeva T.V., Bodyfelt J.D., Flach S. Do nonlinear waves in random media follow nonlinear diffusion equations? Physica D. 2013. Vol. 256. P. 1.
  39. Mulansky M. and Pikovsky A. Energy spreading in strongly nonlinear disordered lattices. New J. Phys. 2013. Vol. 15. 053015.
  40. Basko D.M. Kinetic theory of nonlinear diffusion in a weakly disordered nonlinear Schrodinger chain in the regime of homogeneous chaos. Phys. Rev. E. 2014. Vol. 89. 022921.
  41. Skokos Ch. and Flach S. Spreading of wave packets in disordered systems with tunable nonlinearity. Phys. Rev. E. 2010. Vol. 82. 016208.
  42. Gutzwiller M. Chaos in Classical and Quantum Mechanics. Springer, New York, 1991.
  43. Guhr T., Muller-Groeling A., Weidenmuller H.A. Random Matrix Theories in Quantum Physics: Common Concepts. Phys. Rep. 1998. Vol. 299. P. 189.
  44. Lucioni E. et al. Modeling the transport of interacting matter waves in a disordered system by a nonlinear diffusion equation. Phys. Rev. E. 2013. Vol. 87. 042922.
Received: 
22.11.2016
Accepted: 
16.01.2017
Published: 
28.02.2017
Short text (in English):
(downloads: 101)