Для цитирования:
Юсипов И. И., Лаптева Т. В., Пирова А. Ю., Мееров И. Б., Иванченко М. В. Диффузия нескольких взаимодействующих частиц в локализующих потенциалах: квантовая регулярная и хаотическая динамика // Известия вузов. ПНД. 2017. Т. 25, вып. 1. С. 52-63. DOI: 10.18500/0869-6632-2017-25-1-52-63
Диффузия нескольких взаимодействующих частиц в локализующих потенциалах: квантовая регулярная и хаотическая динамика
В данной работе изучается динамика распространения волновых пакетов в моделях нескольких взаимодействующих квантовых частиц с разными видами пространственной модуляции. Для одной частицы или, что эквивалентно, многих невзаимодействующих частиц, известно, что в случае пространственного беспорядка все собственные состояния становятся локализованными, а в случае квазипериодической неоднородности существует порог перехода к локализации по силе неоднородности. В другом предельном случае – многих взаимодействующих частиц – задача решалась в среднеполевом приближении, в рамках нелинейного дискретного уравнения Шредингера. Здесь наблюдалось разрушение локализации за счет нелинейности, возникающего динамического хаоса. Основными наблюдаемыми свойствами были субдиффузия волновых пакетов, их самоподобие в асимптотическом пределе, зависимость показателя субдиффузии от порядка нелинейности. В настоящей работе показано, что эти свойства обнаруживаются и для нескольких квантовых частиц в решетке с беспорядком, при том, что условия среднеполевого приближения не выполнены. Тем не менее квантовый хаос обеспечивает подобную динамику. При этом показатель субдиффузии уменьшается при увеличении порядка взаимодействия, так же как и в нелинейных уравнениях. В случае квазипериодического потенциала в модели нескольких взаимодействующих частиц наблюдается квантовая регулярная динамика и почти баллистическое распространение волновых пакетов. При этом малая добавка беспорядка разрушает квантовую регулярную динамику.
- Anderson P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958. Vol. 109. P. 1492.
- Aubry S., Andre G. Analyticity breaking and Anderson localization in incommensurate lattices. Proc. Israel Phys. Soc. 1980. Vol. 3. P. 133.
- Kramer B. and MacKinnon A. Localization: theory and experiment. Rep. Prog. Phys. 1993. Vol. 56. P. 1469.
- Evers F. and Mirlin A.D. Anderson transitions. Rev. Mod. Phys. 2008. Vol. 80. P. 1355.
- Schwartz T., et al. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature. 2007. Vol. 446. P. 52.
- Lahini Y., et al. Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices. Phys. Rev. Lett. 2008. Vol. 100. 013906.
- Hu H., et al. Localization of ultrasound in a three-dimensional elastic network. Nature Phys. 2008. Vol. 4. P. 945.
- Billy J., et al. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature. 2008. Vol. 453. P. 891.
- Roati G., et al. Anderson localization of a non-interacting Bose–Einstein condensate. Nature. 2008. Vol. 453. P. 895.
- Laptyeva T.V., Ivanchenko M.V. and Flach S. Nonlinear lattice waves in heterogeneous media. J. Phys. A: Math. Theor. 2014. Vol. 47. 493001.
- Basko D.M., Aleiner I.L. and Altshuler B.L. Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 2006. Vol. 321. P. 1126.
- Aleiner I.L., Altshuler B.L., and Shlyapnikov G.V. A finite-temperature phase transition for disordered weakly interacting bosons in one dimension. Nat. Phys. 2010. Vol. 6. P. 900.
- Michal V.P., Altshuler B.L. and Shlyapnikov G.V. Delocalization of weakly interacting bosons in a 1D quasi-periodic potential. Phys. Rev. Lett. 2014. Vol. 113. 045304.
- Dorokhov O.N. Localization of two bound particles in a one-dimensional random potential. Sov. JETP. 1990. Vol. 71. P. 360 (in Russian: Дорохов О.Н. Локализация двух связанных частиц в одномерном случайном потенциале// ЖЭТФ. 1990. Т. 98 (2). С. 646–654).
- Shepelyansky D.L. Coherent Propagation of Two Interacting Particles in a Random Potential. Phys. Rev. Lett. 1994. Vol. 73. P. 2607.
- Imry Y. Coherent Propagation of Two Interacting Particles in a Random Potential. Europhys. Lett. 1995. Vol. 30. P. 405.
- Roemer R.A. and Schreiber M. No enhancement of the localization length for two interacting particles in a random potential. Phys. Rev. Lett. 1997. Vol. 78. P. 515.
- Frahm K., Muller-Groeling A., Pichard J.L., and Weinmann D. Scaling in interactionassisted coherent transport. Europhys. Lett. 1995. Vol. 31. P. 169.
- Frahm K.M. Interaction induced delocalization of two particles: large system size calculations and dependence on interaction strength. Eur. Phys. J. B. 1999. Vol. 10. P. 371.
- Krimer D.O., Khomeriki R., and Flach S. Two interacting particles in a random potential. JETP Lett. 2011. Vol. 94. P. 406–412.
- Shepelyansky D.L. Two interacting particles in the Harper model. Phys. Rev. B. 1996. Vol. 54. 14896.
- Eilmes A., Grimm U., Romer R.A., Schreiber M. Two interacting particles at a metal-insulator transition. Eur. Phys. J. B. 1999. Vol. 8. P. 547.
- Evangelou S.N., Katsanos D.E. Two interacting electrons in a quasi-periodic chain. Phys. Rev. B. 1997. Vol. 56. P. 12797.
- Flach S., Ivanchenko M., and Khomeriki R. Correlated metallic two-particle bound states in quasiperiodic chains. Europhys. Lett. 2012. Vol. 98. 66002.
- Frahm K.M. and Shepelyansky D.L. Freed by interaction kinetic states in the Harper model. Eur. Phys. J. B. 2015. Vol. 88. P. 337.
- Ivanchenko M.V., Laptyeva T.V., and Flach S. Quantum chaotic subdiffusion in random potentials. Phys. Rev. B. 2014. Vol. 89. 060301(R).
- Krimer D.O. and Flach S. Interaction-induced connectivity of disordered two-particle states. Phys. Rev. B. 2015. Vol. 91. 100201(R).
- Dalfovo F., Giorgini S., Pitaevskii L., and Stringari S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 1999. Vol. 71. P. 463.
- Bloch I., Dalibard J., and Zwerger W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008. Vol. 80. P. 885.
- Molina M.I. Transport of localized and extended excitations in a nonlinear Anderson model. Phys. Rev. B. 1998. Vol. 58. 12547.
- Pikovsky A.S. and Shepelyansky D.L. Destruction of Anderson Localization by a Weak Nonlinearity. Phys. Rev. Lett. 2008. Vol. 100. 094101.
- Flach S., Krimer D.O. and Skokos Ch. Universal Spreading of Wave Packets in Disordered Nonlinear Systems. Phys. Rev. Lett. 2009. Vol. 102. 024101.
- Laptyeva T.V., et al. The crossover from strong to weak chaos for nonlinear waves in disordered systems. EPL. 2010. Vol. 91. 30001.
- Bodyfelt J.D., et al. Nonlinear waves in disordered chains: Probing the limits of chaos and spreading. Phys. Rev. E. 2011, Vol. 84. 016205.
- Pikovsky A., Fishman S. Scaling properties of weak chaos in nonlinear disordered lattices. Phys. Rev. E. 2011. Vol. 83. 025201(R).
- Larcher M., Laptyeva T.V., Bodyfelt J.D., Dalfovo F., Modugno M., and Flach S. Subdiffusion of nonlinear waves in quasi-periodic potentials. New J. Phys. 2012, Vol. 14. 103036.
- Skokos Ch., Gkolias I., and Flach S. Nonequilibrium Chaos of Disordered Nonlinear Waves. Phys. Rev. Lett. 2013. Vol. 111. 064101.
- Laptyeva T.V., Bodyfelt J.D., Flach S. Do nonlinear waves in random media follow nonlinear diffusion equations? Physica D. 2013. Vol. 256. P. 1.
- Mulansky M. and Pikovsky A. Energy spreading in strongly nonlinear disordered lattices. New J. Phys. 2013. Vol. 15. 053015.
- Basko D.M. Kinetic theory of nonlinear diffusion in a weakly disordered nonlinear Schrodinger chain in the regime of homogeneous chaos. Phys. Rev. E. 2014. Vol. 89. 022921.
- Skokos Ch. and Flach S. Spreading of wave packets in disordered systems with tunable nonlinearity. Phys. Rev. E. 2010. Vol. 82. 016208.
- Gutzwiller M. Chaos in Classical and Quantum Mechanics. Springer, New York, 1991.
- Guhr T., Muller-Groeling A., Weidenmuller H.A. Random Matrix Theories in Quantum Physics: Common Concepts. Phys. Rep. 1998. Vol. 299. P. 189.
- Lucioni E. et al. Modeling the transport of interacting matter waves in a disordered system by a nonlinear diffusion equation. Phys. Rev. E. 2013. Vol. 87. 042922.
- 2392 просмотра