For citation:
Dolmatova A. V., Goldobin D. S., Pikovsky A. S. Frequency entrainment and anti-entrainment of coupled active rotators synchronized by common noise. Izvestiya VUZ. Applied Nonlinear Dynamics, 2019, vol. 27, iss. 6, pp. 91-112. DOI: https://doi.org/10.18500/0869-6632-2019-27-6-91-112
Frequency entrainment and anti-entrainment of coupled active rotators synchronized by common noise
Topic and Aim. We study the effect of common noise on the ensemble of coupled active rotators. Such a noise always has a synchronizing effect on the system, whereas the coupling may be attracting (synchronizing) or repulsing
(desynchronizing). For this reason, the case when both the common noise and the coupling simultaneously influence the dynamics of the system is of great interest. The paper aims are to construct a theory describing the behavior of the ensemble of coupled active rotators subject to common noise and to analyze all possible states in the system.
Methods. Phase description is adopted for active rotators. We develop an analytical approach based on a transformation to approximate angle–action variables and averaging over fast rotations that allows to analyze the dynamics of the system.
Results. For identical rotators, we describe a transition from full to partial synchrony at a critical value of repulsive coupling. For ensembles of nonidentical rotators, we show that although the common noise synchronizes the phases of the rotators, the frequency locking becomes imperfect due to the fact that the noise causes episodic phase slips. For moderate repulsive coupling, even more nontrivial effect occurs: strong common noise can lead to a high degree of synchrony, where a juxtaposition of phase locking with frequency repulsion (anti-entrainment) is observed. We show that the frequency repulsion obeys a nontrivial power law.
Discussion. Comparison of the results for the active rotators model with those for the Kuramoto–Sakaguchi system of coupled oscillators shows that the basic effects are similar in these setups. However, technically the analysis of the active rotators is more involved. The developed analytical theory is confirmed by the results of direct numerical simulation.
- Benz S.P., Burroughs C.J. Coherent emission from two-dimensional Josephson junction arrays // Appl. Phys. Lett. 1991. Vol. 58. P. 2162–2164. doi: 10.1063/1.104993
- Nixon M., Ronen E., Friesem A.A., Davidson N. Observing geometric frustration with thousands of coupled lasers // Phys. Rev. Lett. 2013. Vol. 110. 184102. doi: 10.1103/PhysRevLett.110.184102
- Kiss I., Zhai Yu., Hudson J.L. Emerging coherence in a population of chemical oscillators // Science. 2002. Vol. 296. P. 1676–1678. doi: 10.1126/science.1070757
- Temirbayev A.A., Zhanabaev Z.Z., Tarasov S.B., Ponomarenko V.I., Rosenblum M. Experiments on oscillator ensembles with global nonlinear coupling // Phys. Rev. E. 2012. Vol. 85. 015204. doi: 10.1103/PhysRevE.85.015204
- Temirbayev A.A., Nalibayev Y.D., Zhanabaev Z.Z., Ponomarenko V.I., Rosenblum M. Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling: An experimental study // Phys. Rev. E. 2013. Vol. 87. 062917. doi: 10.1103/PhysRevE.87.062917
- Acebron J.A., Bonilla L.L., Vicente C.J.P., Ritort F., Spigler R. The Kuramoto model: A simple paradigm for synchronization phenomena // Rev. Mod. Phys. 2005. Vol. 77. P. 137–185. doi: 10.1103/RevModPhys.77.137
- Pikovsky A., Rosenblum M. Dynamics of globally coupled oscillators: Progress and perspectives // Chaos. 2015. Vol. 25. 097616. doi: 10.1063/1.4922971
- Kuramoto Y. Self-entrainment of a population of coupled non-linear oscillators // International Symposium on Mathematical Problems in Theoretical Physics. January 23–29, 1975, Kyoto University, Kyoto, Japan/ Ed. H. Araki. Springer Lecture Notes in Physics. No. 39. New York: Springer, 1975. P. 420–422.
- Pikovskii A.S. Synchronization and stochastization of nonlinear oscillations by external noise // Nonlinear and Turbulent Processes in Physics. Vol. 3 / Ed. R.Z. Sagdeev. Chur: Harwood Academic, 1984. P. 1601–1604.
- Pikovskii A.S. Synchronization and stochastization of array of self-excited oscillators by external noise. Radiophys. Quantum Electron., 1984, vol. 27, pp. 390–395.
- Garc´ia-Alvarez D., Bahraminasab A., Stefanovska A., McClintock P.V.E. Competition between noise and coupling in the induction of synchronisation // Europhys. Lett. 2009. Vol. 88. 30005. doi: 10.1209/0295-5075/88/30005
- Nagai K.H., Kori H. Noise-induced synchronization of a large population of globally coupled nonidentical oscillators // Phys. Rev. E. 2010. Vol. 81. 065202. doi: 10.1103/PhysRevE.81.065202
- Braun W., Pikovsky A., Matias M.A., Colet P. Global dynamics of oscillator populations under common noise // Europhys. Lett. 2012. Vol. 99. 20006. doi: 10.1209/0295-5075/99/20006
- Pimenova A.V., Goldobin D.S., Rosenblum M., Pikovsky A. Interplay of coupling and common noise at the transition to synchrony in oscillator populations // Sci. Rep. 2016. Vol. 6. 38518. doi: 10.1038/srep38518
- Goldobin D.S., Dolmatova A.V., Rosenblum M., Pikovsky A. Synchronization in KuramotoSakaguchi ensembles with competing influence of common noise and global coupling. Izvestiya VUZ. Applied Nonlinear Dynamics, 2017, vol. 25, no. 6, pp. 5–37 (in Russian). doi: 10.18500/0869-6632-2017-25-6-5-37
- Goldobin D.S., Dolmatova A.V. Frequency repulsion in ensembles of general limit-cycle oscillators synchronized by common noise in the presence of global desynchronizing coupling. Izvestiya VUZ. Applied Nonlinear Dynamics, 2019, vol. 27, no. 3, pp. 33–60 (in Russian).
- Shinomoto S., Kuramoto Y. Phase transitions in active rotator systems // Prog. Theor. Phys. 1986. Vol. 75. P. 1105–1110. doi: 10.1143/PTP.75.1105
- Sakaguchi H., Shinomoto S., Kuramoto Y. Phase transitions and their bifurcation analysis in a large population of active rotators with mean-field coupling // Prog. Theor. Phys. 1988. Vol. 79. P. 600–607. doi: 10.1143/PTP.79.600
- Park S.H., Kim S. Noise-induced phase transitions in globally coupled active rotators // Phys. Rev. E. 1996. Vol. 53. P. 3425–3430. doi: 10.1103/PhysRevE.53.3425
- Tessone C.J., Scire A., Toral R., Colet P. Theory of collective firing induced by noise or diversity in excitable media // Phys. Rev. E. 2007. Vol. 75. 016203. doi: 10.1103/PhysRevE.75.016203
- Zaks M.A., Neiman A.B., Feistel S., Schimansky-Geier L. Noise-controlled oscillations and their bifurcations in coupled phase oscillators // Phys. Rev. E. 2003. Vol. 68. 066206. doi: 10.1103/PhysRevE.68.066206
- Sonnenschein B., Zaks M., Neiman A., Schimansky-Geier L. Excitable elements controlled by noise and network structure // Eur. Phys. J.: Spec. Top. 2013. Vol. 222. P. 2517–2529. doi: 10.1140/epjst/e2013-02034-7
- Ionita F., Meyer-Ortmanns H. Physical aging of classical oscillators // Phys. Rev. Lett. 2014. Vol. 112. 094101. doi: 10.1103/PhysRevLett.112.094101
- Goldobin D.S., Pikovsky A.S. Synchronization of periodic self-oscillations by common noise. Radiophys. Quantum Electron., 2004, vol. 47, no. 10–11, pp. 910–915. doi: 10.1007/s11141-005-0031-8
- Goldobin D.S., Pikovsky A.S. Synchronization of self-sustained oscillators by common white noise // Phys. A. 2005. Vol. 351, № 1. P. 126–132. doi: 10.1016/j.physa.2004.12.014
- Teramae J.N., Tanaka D. Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators // Phys. Rev. Lett. 2004. Vol. 93. 204103. doi: 10.1103/PhysRevLett.93.204103
- Sakaguchi H. Synchronization in coupled phase oscillators // J. Korean Phys. Soc. 2008. Vol. 53. P. 1257–1264. doi: 10.3938/jkps.53.1257
- Bacic I., Yanchuk S., Wolfrum M., Franovic I. Noise-induced switching in two adaptively coupled excitable systems // Eur. Phys. J.: Spec. Top. 2018. Vol. 227. P. 1077–1090. doi: 10.1140/epjst/e2018-800084-6
- Marvel S.A., Strogatz S.H. Invariant submanifold for series arrays of Josephson junctions // Chaos. 2009. Vol. 19. 013132. doi: 10.1063/1.3087132
- Laing C.R. Derivation of a neural field model from a network of theta neurons // Phys. Rev. E. 2014. Vol. 90. 010901. doi: 10.1103/PhysRevE.90.010901
- O’Keeffe K.P., Strogatz S.H. Dynamics of a population of oscillatory and excitable elements // Phys. Rev. E. 2016. Vol. 93. 062203. doi: 10.1103/PhysRevE.93.062203
- Luke T.B., Barreto E., So P. Macroscopic complexity from an autonomous network of networks of theta neurons // Front. Comput. Neurosci. 2014. Vol. 8. 145. doi: 10.3389/fncom.2014.00145
- Montbrio E., Pazo D., Roxin A. Macroscopic description for networks of spiking neurons // Phys. Rev. X. 2015. Vol. 5. 021028. doi: 10.1103/PhysRevX.5.021028
- Ott E., Antonsen T.M. Low dimensional behavior of large systems of globally coupled oscillators // Chaos. 2008. Vol. 18. 037113. doi: 10.1063/1.2930766
- Tyulkina I.V., Goldobin D.S., Klimenko L.S., Pikovsky A. Dynamics of noisy oscillator populations beyond the Ott-Antonsen ansatz // Phys. Rev. Lett. 2006. Vol. 120. 264101. doi: 10.1103/PhysRevLett.120.264101
- Goldobin D.S., Tyulkina I.V., Klimenko L.S., Pikovsky A. Collective mode reductions for populations of coupled noisy oscillators // Chaos. 2018. Vol. 28. 101101. doi: 10.1063/1.5053576
- Goldobin D.S., Tyulkina I.V., Klimenko L.S., Pikovskii A. Towards the description of collective dynamics in ensembles of real oscillators. Bulletin of Perm University. Physics, 2018, no. 3 (41), pp. 5–7 (in Russian). doi: 10.17072/1994-3598-2018-3-05-07
- Stratonovich R.L. Topics in the Theory of Random Noise. New York: Gordon and Breach, 1967.
- Nayfeh A.H. Introduction to Perturbation Techniques. New York, John Wiley & Sons, 1981, 519 p. doi: 10.1002/zamm.19810611224
- Benzi R., Sutera A., Vulpiani A. The mechanism of stochastic resonance // J. Phys. A. 1981. Vol. 14. P. L453–L457. doi: 10.1088/0305-4470/14/11/006
- Gang H., Ditzinger T., Ning C.Z., Haken H. Stochastic resonance without external periodic force // Phys. Rev. Lett. 1993. Vol. 71. P. 807–810. doi: 10.1103/PhysRevLett.71.807
- Gammaitoni L., Hanggi P., Jung P., Marchesoni F. Stochastic resonance // Rev. Mod. Phys. 1998. Vol. 70. P. 223–287. doi: 10.1103/RevModPhys.70.223
- Pikovsky A.S., Kurths J. Coherence resonance in a noise-driven excitable system // Phys. Rev. Lett. 1997. Vol. 78. P. 775–778. doi: 10.1103/PhysRevLett.78.775
- Goldobin D.S., Pikovsky A. Synchronization and desynchronization of self-sustained oscillators by common noise // Phys. Rev. E. 2005. Vol. 71. 045201. doi: 10.1103/PhysRevE.71.045201
- Goldobin D.S., Pikovsky A. Antireliability of noise-driven neurons // Phys. Rev. E. 2006. Vol. 73. 061906. doi: 10.1103/PhysRevE.73.061906
- 2169 reads