For citation:
Novichkova V. A., Rybalova E. V., Ponomarenko V. I., Vadivasova T. E. Influence of coupling topology and noise on the possibility of frequency tuning in ensembles of FitzHugh–Nagumo oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, vol. 33, iss. 2, pp. 266-282. DOI: 10.18500/0869-6632-003146, EDN: ANSXHT
Influence of coupling topology and noise on the possibility of frequency tuning in ensembles of FitzHugh–Nagumo oscillators
Purpose. The study focuses on analyzing spike activity and synchronization in ensembles of FitzHugh–Nagumo neurons, both with and without external noise excitation. In these networks oscillations at different frequencies can be
induced depending on the excitability parameter of individual elements and the coupling strength between them. Additionally, variations in these parameters can lead to synchronization among the elements. The research investigates the dynamics of both a single-layer network, which includes a common element, and a three-layer network with an intermediate neuron-hub layer.
Methods. To analyze the dynamics of the networks under investigation, we calculate the time-averaged spike frequencies of all elements. These frequencies are then averaged for each outer layer and compared with the frequency of the central element, as well as with each other in the case of a multilayer network. In order to assess the impact of coupling strength on the spike activity and synchronization of the network elements, we construct frequency distributions and frequency difference distributions in a plane of coupling strength coefficients.
Results. It has been shown that small single-layer and three-layer networks of identical oscillators (FitzHugh–Nagumo neurons) with simple coupling topologies can exhibit different spike activity in different parts of the system. In this case, the neurons transition to a self-oscillatory mode due to repulsive coupling between the elements. The research has established that in a single-layer network, a ring of elements can synchronize in frequency with the central element within a specific range of coupling strength values. In a three-layer system, layer synchronization can also be observed. Weak noise has minimal impact on the synchronization boundaries of all three layers, in terms of coupling parameters. However, as the noise intensity increases, synchronization area decreases. At the same time, the noise leads to the emergence of a new synchronization region in which relay synchronization of the layers is observed in the absence of synchronization with the hub.
Conclusion. The study explored the potential of exciting oscillations and achieving synchronization in single-layer and three-layer networks of coupled FitzHugh–Nagumo oscillators. The coupling strength between the elements varied in order to investigate its impact. Although the study only provided a broad understanding of the spike activity of excitable neurons in the two network models examined, it adequately demonstrated the crucial role of coupling in the spiking activity of these neurons.
- Buzsaki G. Rhythms of the Brain. Oxford: Oxford University Press, 2006. 464 p. DOI: 10.1093/acprof:oso/9780195301069.001.0001.
- Rabinovich M. I., Varona P., Selverston A. I., Abarbanel H. D. Dynamical principles in neuroscience //Reviews of modern physics. 2006. Vol. 78. P. 1213. DOI: 10.1103/RevModPhys.78.1213.
- Izhikevich E. M. Dynamical Systems in Neuroscience. Cambridge: MIT Press, 2007. 441 p.DOI: 10.7551/mitpress/2526.001.0001.
- Kaiser M., Hilgetag C. C., Kotter R. Hierarchy and dynamics of neural networks // Front. Neuroinform. 2010. Vol. 4. P. 112. DOI: 10.3389/fninf.2010.00112.
- Hizanidis J., Kouvaris N. E., Zamora-Lopez G., Dıaz-Guilera A., Antonopoulos C. G. Chimera-like states in modular neural networks // Scientific Reports. 2016. Vol. 6. P. 19845. DOI: 10.1038/srep19845.
- Herbet G., Duffau H. Revisiting the functional anatomy of the human brain: toward a metanetworking theory of cerebral functions // Physiological Reviews. 2020. Vol. 100, iss. 3. P. 1181–1228. DOI: 10.1152/physrev.00033.2019.
- Hramov AE, Frolov NS, Maksimenko VA, Kurkin SA, Kazantsev VB, Pisarchik AN. Functional networks of the brain: from connectivity restoration to dynamic integration. Physics-Uspekhi. 2021;64(6):584–616. DOI: 10.3367/UFNe.2020.06.038807.
- Ghosh-Dastidar S., Adeli H. Spiking neural networks // International Journal of Neural Systems. 2009. Vol. 19, no. 04. P. 295–308. DOI: 10.1142/S0129065709002002.
- Pfeiffer M., Pfeil T. Deep learning with spiking neurons: opportunities and challenges // Frontiers in Neuroscience. 2018. Vol. 12. P. 774. DOI: 10.3389/fnins.2018.00774.
- Han J. K., Yun S. Y., Lee S. W., Yu J. M., Choi Y. K. A review of artificial spiking neuron devices for neural processing and sensing // Advanced Functional Materials. 2022. Vol. 32, iss. 33. P. 2204102. DOI: 10.1002/adfm.202204102.
- Yamazaki K., Vo-Ho V. K., Bulsara D., Le N. Spiking neural networks and their applications: A review // Brain Sciences. 2022. Vol. 12, iss. 7. P. 863. DOI: 10.3390/brainsci12070863.
- Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge University Press, 2003. DOI: 10.1017/CBO9780511755743.
- Kuramoto Y. Chemical Oscillations, Waves, and Turbulence. New York: Courier Dover Publications, 2003. 176 p. DOI: 10.1007/978-3-642-69689-3.
- Boccaletti S., Pisarchik A., del Genio C., Amann A. Synchronization: From Coupled Systems to Complex Networks. Cambridge: Cambridge University Press, 2018. 264 p. DOI: 10.1017/9781107297111.
- Boccaletti S., Bragard J., Arecchi F. T., Mancini H. Synchronization in non-identical extended systems // Phys. Rev. Lett. 1999. Vol. 83. P. 536–539. DOI: 10.1103/PhysRevLett.83.536.
- Leyva I., Sevilla-Escoboza R., Sendina-Nadal I., Gutierrez R., Buldu J. M., Boccaletti S.Inter-layer synchronization in non-identical multi-layer networks // Scientific Reports. 2017. Vol. 7. P. 45475.DOI: 10.1038/srep45475.
- Andrzejak R. G., Ruzzene G., Malvestio I. Generalized synchronization between chimera states // Chaos. 2017. Vol. 27, iss. 5. P. 053114. DOI: 10.1063/1.4983841.
- Bukh A., Rybalova E., Semenova N., Strelkova G., Anishchenko V. New type of chimera and mutual synchronization of spatiotemporal structures in two coupled ensembles of nonlocally interacting chaotic maps // Chaos. 2017. Vol. 27, iss. 11. P. 111102. DOI: 10.1063/1.5009375.
- Rybalova E. V., Vadivasova T. E., Strelkova G. I., Anishchenko V. S., Zakharova A. S. Forced synchronization of a multilayer heterogeneous network of chaotic maps in the chimera state mode// Chaos. 2019. Vol. 29, iss. 3. P. 033134. DOI: 10.1063/1.5090184.
- Elson R. C., Selverston A. I., Huerta R., Rulkov N. F., Rabinovich M. I., Abarbanel H. D. Synchronous behavior of two coupled biological neurons // Phys. Rev. Lett. 1998. Vol. 81. P. 5692. DOI: 10.1103/PhysRevLett.81.5692.
- Kopell N., Ermentrout G. B., Whittington M. A., Traub R. D. Gamma rhythms and beta rhythms have different synchronization properties // Proceedings of the National Academy of Sciences. 2000. Vol. 97, no. 4. P. 1867–1872. DOI: 10.1073/pnas.97.4.1867.
- Nowotny T., Huerta R., Rabinovich M. I. Neuronal synchrony: peculiarity and generality // Chaos. 2008. Vol. 18. P. 5692. DOI: 10.1063/1.2949925.
- Uhlhaas P., Pipa G., Lima B., Melloni L., Neuenschwander S., Nikolic D., Singer W. Neural synchrony in cortical networks: history, concept and current status // Front. Integr. Neurosci. 2009. Vol. 3. P. 17. DOI: 10.3389/neuro.07.017.2009.
- Ramlow L., Sawicki J., Zakharova A., Hlinka J., Claussen J. C., Scholl E. Partial synchronization in empirical brain networks as a model for unihemispheric Sleep // Europhysics Letters. 2019. Vol. 126, iss. 5. P. 50007. DOI: 10.1209/0295-5075/126/50007.
- Andreev A. V., Maksimenko V. A., Pisarchik A. N., Hramov A. E. Synchronization of interacted spiking neuronal networks with inhibitory coupling // Chaos, Solitons & Fractals. 2021. Vol. 146. P. 110812. DOI: 10.1016/j.chaos.2021.110812.
- Ward L. M. Synchronous neural oscillations and cognitive processes // Trends Cogn. Sci. 2003. Vol. 7, iss. 12. P. 553–559. DOI: 10.1016/j.tics.2003.10.012.
- Cantero J. L., Atienza M. The role of neural synchronization in the emergence of cognition across the wake-sleep cycle // Rev Neurosci. 2005. Vol. 16, iss. 1. P. 69–83. DOI: 10.1515/revneuro.2005.16.1.69
- Chick D, Borisyuk RM, Kazanovich YB. Synchronization in a neural network of Hodgkin–Huxley neurons with a central element. Mat. Biolog. Bioinform. 2008;3(1):16–35.
- Fell J., Axmacher N. The role of phase synchronization in memory processes // Nat. Rev. Neurosci. 2011. Vol. 12. P. 105–118. DOI: 10.1038/nrn2979.
- Gansel K. S. Neural synchrony in cortical networks: mechanisms and implications for neural information processing and coding // Front Integr Neurosci. 2022. Vol. 16. P. 900715. DOI: 10.3389/fnint.2022.900715.
- Dominguez L. G., Wennberg R. A., Gaetz W., Cheyne D., Snead O. C., Velazquez J. L. P. Enhanced synchrony in epileptiform activity? Local versus distant phase synchronization in generalized seizures // J. Neurosci. 2005. Vol. 25. P. 8077–8084. DOI: 10.1523/JNEUROSCI.1046-05.2005.
- Lehnertz K. Epilepsy and nonlinear dynamics // J. Biol. Phys. 2008. Vol. 34. P. 253–266. DOI: 10.1007/s10867-008-9090-3.
- Perez Velazquez J., Guevara E. R., Rosenblum M. The epileptic thalamocortical network is a macroscopic self-sustained oscillator: evidence from frequency-locking experiments in rat brains // Sci. Rep. 2015. Vol. 5. 8423. DOI: 10.1038/srep08423.
- Gerster M., Berner R., Sawicki J., Zakharova A., Skoch A., Hlinka J., Lehnertz K., Scholl E. FitzHugh–Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena // Chaos. 2020. Vol. 30, iss. 12. P. 123130. DOI: 10.1063/5.0021420.
- Izhikevich E. M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Cambridge: MIT Press, 2006. 458 p. DOI: 10.7551/mitpress/2526.001.0001.
- Stiefel K., Ermentrout B. Neurons as oscillators // Journal of Neurophysiology. 2016. Vol. 116. P. 00525. DOI: 10.1152/jn.00525.2015.
- Smallridge R. Repulsive or attractive? // Nat Rev Neurosci. 2003. Vol. 4. P. 522. DOI: 10.1038/nrn1169.
- Liu C., Trush O., Han X., Wang M., Takayama R., Yasugi T., Hayashi T., Sato M. Dscam1 establishes the columnar units through lineage-dependent repulsion between sister neurons in the fly brain // Nat Commun. 2020. Vol. 11. P. 4067. DOI: 10.1038/s41467-020-17931-w.
- Yanagita T., Ichinomiya T., Oyama Y. Pair of excitable FitzHugh-Nagumo elements: Synchronization, multistability, and chaos // Phys. Rev. E. 2005. Vol. 72. P. 056218. DOI: 10.1103/PhysRevE.72.056218.
- Rybalova EV, Bogatenko TR, Bukh AV, Vadivasova TE. The role of coupling, noise and harmonic impact in oscillatory activity of an excitable FitzHugh–Nagumo oscillator network. Izvestiya of Saratov University. Physics. 2023;23(4):295-306. DOI: 10.18500/1817-3020-2023-23-4-294-306.
- Ullner E., Zaikin A., Volkov E., Ojalvo J. Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cell communication // Phys. Rev. Lett. 2007. Vol. 99. 148103. DOI: 10.1103/PhysRevLett.99.148103
- Hens C. R., Pal P., Bhowmick S. K., Roy P. K., Sen A., Dana S. K. Diverse routes of transition from amplitude to oscillation death in coupled oscillators under additional repulsive links // Phys. Rev. E. Vol. 89, iss. 3. P. 032901. DOI: 10.1103/PhysRevE.89.032901.
- Maistrenko Y., Penkovsky B., Rosenblum M. Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions // Phys. Rev. E. 2014. Vol. 89. P. 060901. DOI: 10.1103/PhysRevE.89.060901.
- Mishra A., Hens C., Bose M., Roy P. K., Dana S. K. Chimeralike states in a network of oscillators under attractive and repulsive global coupling // Phys. Rev. E. 2015. Vol. 92, no. 6. P. 062920. DOI: 10.1103/PhysRevE.92.062920.
- Shepelev I. A., Muni S. S., Vadivasova T. E. Spatiotemporal patterns in a 2D lattice with linear repulsive and nonlinear attractive coupling // Chaos. 2021. Vol. 31. P. 043136. DOI: 10.1063/5.004832.
- van den Heuvel P. M., Sporns O. Network hubs in the human brain // Trends in Cognetive Sciense / Special issue: The Connectome – Feature review. 2013. Vol. 17, iss. 12. P. 683–696. DOI: 10.1016/j.tics.2013.09.012.
- Arnatkeviciute A., Fulcher B. D., Pocock R., Fornito A. Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome // PLoS Comput. Biol. 2018. Vol. 14. P. e1005989. DOI: 10.1371/journal.pcbi.1005989.
- 371 reads