ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Popova E. S. Influence of fluctuations on evolution of three-dimensional torus in nonautonomous system. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 2, pp. 98-103. DOI: 10.18500/0869-6632-2012-20-2-98-103

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 104)
Article type: 

Influence of fluctuations on evolution of three-dimensional torus in nonautonomous system

Popova Elena Sergeevna, Saratov State University

The transition to chaos through the destruction of three-dimensional torus is studied in a nonautonomous system with quasi-periodic impact as example. Analysis is carried out of the influence both of additive noise and frequency fluctuations impact on the stability of three-dimensional torus. It is shown that under the influence of additive noise and frequency fluctuations impact Lyapunov exponent remains negative. This allows to conclude that in this model three-dimensional torus is structurally stable in contrast to the autonomous system. 

  1. Ruelle D,  Takens F. On the Nature of Turbulence. In: Strange attractors. Ed. Sinaya YaG, Shilnikova LP. Moscow: Mir. 1981:117–151 (in Russian).
  2. Newhouse S, Ruelle D, Takens F. Occurrence of strange Axiom A attractors near quasi periodic flows on Tm, m≧3. Commun. Math. Phys. 1978;64:35–40. DOI: 10.1007/BF01940759.
  3. Loskutov AYu, Mikhailov AS. Fundamentals of the Theory of Complex Systems. Moscow-Izhevsk: Institute for Computer Research; 2007. 620 p. (in Russian).
  4. Grebogi C, Ott E, Yorke JA. Are three–frequency quasi–periodic orbits to be expected in typical nonlinear systems. Phys. Rev. Lett. 1983;51:339–345. DOI: 10.1103/PhysRevLett.51.339.
  5. Grebogi C, Ott E, Yorke JA. Attractors on an N-torus: Quasiperiodicity versus chaos. Physica D. 1985;15:354–373. DOI: 10.1016/S0167-2789(85)80004-X.
  6. Grebogi C, Ott E, Pelikan S, Yorke JA. Strange attractors that are not chaotic. Physica D. 1984;13:261–268. DOI: 10.1016/0167-2789(84)90282-3.
  7. Tavakol RK, Tworkowski AS. On the occurrence of quasiperiodic motion on three tori. Phys. Lett. A. 1984;100(2):65–67. DOI: 10.1016/0375-9601(84)90661-3.
  8. Tavakol RK, Tworkowski AS. An example of quasiperiodic motion on T4. Phys. Lett. A. 1984;100:273–276.
  9. Khovanov IA, Khovanova NA, Anishchenko VS, et al. Sensitivity to initial conditions and lyapunov exponent of a quasiperiodic system. Tech. Phys. 2000;45:633–635. DOI: 10.1134/1.1259690.
  10. Walden RW, Kolodner P, Ressner A, Surko CM. Nonchaotic Rayleigh-Bénard convection with four and five incommensurate frequencies. Phys. Rev. Lett. 1984;53(3):242–245. DOI: 10.1103/PhysRevLett.53.242.
  11. Kim SH, Ostlund S. Simultaneous rational approximations in the study of dynamical systems. Phys. Rev. A. 1986;34(4):3426–3434. DOI: 10.1103/physreva.34.3426.
  12. Bezruchko BP, Kuznetsov SP, Seleznev EP, Pikovsky AS, Voidel U. On the dynamics of nonlinear systems under external quasi-periodic influence near the end point of the torus doubling bifurcation line. Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(6):3–20 (in Russian).
  13. Bezruchko BP, Kuznetsov SP, Seleznev YP. Experimental observation of dynamics near the torus-doubling terminal critical point. Phys. Rev. E. 2000;62(6):7828–7830. DOI: 10.1103/physreve.62.7828.
  14. Khovanov IA, Khovanova NA, McClintock PVE, Anishchenko VS. The effect of noise on strange nonchaotic attractors. Phys. Letters A. 2000;268:315–322. DOI: 10.1016/S0375-9601(00)00183-3.  
Short text (in English):
(downloads: 89)