ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


The article published as Early Access!

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
530.182
EDN: 

Influence of Gaussian noise and Levy noise on the phase dynamics of the ensemble of Kuramoto-like oscillators of first and second order

Autors: 
Arinushkin P A, Saratov State University
Kupriyanov Vladislav, Saratov State University
Vadivasova Tatjana Evgenevna, Saratov State University
Abstract: 

The purpose of this study is to determine the stability threshold of the dynamic modes of the ensemble of phase Kuramoto-like oscillators, describing the behavior of a simple power grid model with a ring topology, under the external influence of Gaussian noise and Levy noise, to evaluate the results and determine the threshold values of noise at which the considered dynamic model is the most sensitive to noise and demonstrates a change of the steady state. 

Methods. In this paper, two ensembles of Kuramoto-like phase oscillators with the same topology but different number of oscillators are investigated. The ensembles consist of second and first order phase oscillators modeling the dynamics of generators and consumers in the power grid, respectively. In this work, mode maps are computed and used, from which regions with different synchronous dynamics are selected. In the selected regions, a set of initial conditions is fixed and the ensemble under study is modeled in the presence of noise of different types and intensities. The obtained result is evaluated with the help of calculated spatio-temporal diagrams, values of the Kuramoto parameter and statistical characteristics estimated from the realizations of oscillations in time.

Results. It has been shown that a power grid model consisting of Kuramoto-like phase oscillators exhibits different robustness to external noise disturbances depending on the type of noise disturbance and the steady-state dynamic regime. It was demonstrated that the frequency synchronization mode of all oscillators, independent of the initial conditions, is insensitive to the influence of white noise of high intensity, both Gaussian and Levy noise. Whereas, in the region of coexistence of synchronous and asynchronous behavior, depending on the initial conditions, a change of phase dynamics under the influence of different noise is observed. Numerical experiment has shown that the power grid model is more susceptible to Levy noise due to the noise features associated with random emissions, which in turn can be interpreted as random impulses.

Conclusion. In a power grid model represented by two ensembles consisting of different numbers of Kuramoto-like phase oscillators of second and first order, different modes of frequency and phase dynamics of the oscillators are established. A numerical experiment with the influence of Gaussian noise and Levy noise is carried out for the obtained modes. It is shown that the model under study is more sensitive to Levy noise, the influence of which leads to a change of the dynamic mode due to the influence of strong random pulses.
 

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 20-12-00119).
Reference: 
  1. Ackermann T., Andersson G., Soder L. Distributed generation: a definition // Electric Power Systems Research. – 2001. – Vol. 57. – I. 3. – Pp. 195-204.
  2. Milan P., Wachter M., Peinke J. Turbulent character of wind energy // Physical review letters. –2013. – Vol. 110. – No. 13. – Pp. 138701.
  3. Heide D., L. Von Bremen, Greiner M., Hoffmann C., Speckmann M., Bofinger S. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe // Renewable Energy. – 2010. – Vol. 35. – No. 11. – Pp. 2483-2489.
  4. Heide D., Greiner M., Von Bremen L., Hoffmann C. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation // Renewable Energy. – 2011. – Vol. 36. – No. 9. – Pp. 2515-2523.
  5. Anvari M., Lohmann G., Wachter M., Milan P., Lorenz E., Heinemann D., Tabar MRR., Peinke J. Short term fluctuations of wind and solar power systems // New Journal of Physics. – 2016. – Vol. 18. – No. 6. – Pp. 063027.
  6. Anvari M., Wachter M., Peinke J. Phase locking of wind turbines leads to intermittent power production //Europhysics Letters. – 2017. – Vol. 116. – No. 6. – Pp. 60009.
  7. Schmietendorf K., Peinke J., Kamps O. The impact of turbulent renewable energy production on power grid stability and quality // The European Physical Journal B. – 2017. – Vol. 90. – Pp. 1-6.
  8. Schafer B., Beck C., Aihara K., Witthaut D., Timme M. Non-Gaussian power grid frequency fluctuations characterized by Levy-stable laws and superstatistics // Nature Energy. – 2018. – Vol. 3. – No. 2. – Pp. 119-126.
  9. Lee D., Chiang Y., Chen Y.T., Tsai H.H. Impacts of battery energy storage system on power grid smartness: Case study of Taiwan Power Company // Journal of Energy Storage. – 2024. – Vol. 86. – Pp. 111188.
  10. Dorfler F., Bullo F. Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators // SIAM Journal on Control and Optimization. – 2012. – Vol. 50. – No. 3. – Pp. 1616-1642.
  11. Arenas A., Diaz-Guilera A., Kurths J., Moreno Y., Zhou C. Synchronization in complex networks // Physics reports. – 2008. – Vol. 469. – No. 3. – Pp. 93-153.
  12. Filatrella G., Nielsen A. H., Pedersen N. F. Analysis of a power grid using a Kuramoto-like model // The European Physical Journal B. – 2008. – Vol. 61. – Pp. 485-491.
  13. Choi Y. P., Ha S. Y., Yun S. B. Complete synchronization of Kuramoto oscillators with finite inertia //Physica D: Nonlinear Phenomena. – 2011. – Vol. 240. – No. 1. – Pp. 32-44.
  14. Lozano S., Buzna L., Diaz-Guilera A. Role of network topology in the synchronization of power systems // The European Physical Journal B. – 2012. – Vol. 85. – Pp. 1-8.
  15. Fortuna L., Frasca M., Sarra Fiore A. A network of oscillators emulating the Italian high-voltage power grid // International Journal of Modern Physics B. – 2012. – Vol. 26. – No. 25. – Pp.1246011.
  16. Rohden M., Sorge A., Timme M., Witthaut D. Self-organized synchronization in decentralized power grids // Physical review letters. – 2012. – Vol. 109. – No. 6. – Pp. 064101.
  17. Carareto R., Baptista M. S., Grebogi C. Natural synchronization in power-grids with anti-correlated units // Communications in Nonlinear Science and Numerical Simulation. – 2013. – Vol. 18. – No. 4. – Pp. 1035-1046.
  18. Motter A. E., Myers S.A., Anghel M., Nishikawa T. Spontaneous synchrony in power-grid networks // Nature Physics. – 2013. – Vol. 9. – No. 3. – Pp. 191-197.
  19. Dorfler F., Bullo F.Synchronization in complex networks of phase oscillators: A survey // Automatica. – 2014. – Vol. 50. – No. 6. – Pp. 1539-1564.
  20. Olmi S., Navas A., Boccaletti S., Torcini A. Hysteretic transitions in the Kuramoto model with inertia // Physical Review E. – 2014. – Vol. 90. – No. 4. – Pp. 042905.
  21. Grzybowski J. M. V., Macau E. E. N., Yoneyama T. On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators // Chaos: An Interdisciplinary Journal of Nonlinear Science. – 2016. – Vol. 26. – No. 11.
  22. Mirollo R. E., Strogatz S. H. The spectrum of the locked state for the Kuramoto model of coupled oscillators // Physica D: Nonlinear Phenomena. – 2005. – Vol. 205. – No. 1-4. – Pp. 249-266.
  23. Delabays R., Coletta T., Jacquod P. Multistability of phase-locking in equal-frequency Kuramoto models on planar graphs // Journal of Mathematical Physics. – 2017. – Vol. 58. – No. 3.
  24. Nishikawa T., Motter A. E. Comparative analysis of existing models for power-grid synchronization // New Journal of Physics. – 2015. – Vol. 17. – No. 1. – Pp. 015012.
  25. Manik D., Witthaut D., Schafer B., Matthiae M., Sorge A., Rohden M., Katifori E., Timme M. Supply networks: Instabilities without overload // The European Physical Journal Special Topics. – 2014. – Vol. 223. – Pp. 2527-2547.
  26. Coletta T., Jacquod P. Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids // Physical Review E. – 2016. – Vol. 93. – No. 3. – Pp. 032222.
  27. Machowski J., Lubosny Z., Bialek J.W., Bumby J.R. Power system dynamics: stability and control. – John Wiley & Sons, 2020. – Pp. 1-888.
  28. Tumash L., Olmi S., Scholl E. Stability and control of power grids with diluted network topology // Chaos: An Interdisciplinary Journal of Nonlinear Science. – 2019. – Vol. 29. – No. 12.
  29. Gotz M., Rapp M., Dostert K. Power line channel characteristics and their effect on communication system design // IEEE Communications Magazine. – 2004. – Vol. 42. – No. 4. – Pp. 78-86.
  30. J Gonzalez-Ramos, N Uribe-Perez, A Sendin, D Gil, D de la Vega, I Fernandez, IJ Nunez Upgrading the power grid functionalities with broadband power line communications: Basis, applications, current trends and challenges // Sensors. – 2022. – Vol. 22. – No. 12. – Pp. 4348.
  31. Bai T., Zhang H., Wang J., Xu C., Elkashlan M., Nallanathan A., Hanzo L. Fifty years of noise modeling and mitigation in power-line communications // IEEE Communications Surveys & Tutorials. – 2020. – Vol. 23. – No. 1. – Pp. 41-69.
  32. Antoniali M., Versolatto F., Tonello A. M. An experimental characterization of the PLC noise at the source // IEEE Transactions on Power Delivery. – 2015. – Vol. 31. – No. 3. – Pp. 1068-1075.
  33. Di Bert L., Caldera P., Schwingshackl D., Tonello A.M. On noise modeling for power line communications // 2011 IEEE International Symposium on Power Line Communications and Its Applications. – IEEE, 2011. – Pp. 283-288.
  34. Meng H., Guan Y. L., Chen S. Modeling and analysis of noise effects on broadband power-line communications // IEEE Transactions on Power delivery. – 2005. – Vol. 20. – No. 2. – Pp. 630-637.
  35. Ferreira H. C., Lampe L., Newbury J., Swart T.G. Power line communications: theory and applications for narrowband and broadband communications over power lines. – John Wiley & Sons, 2011. – Pp. 1-536.
  36. Nassar M., Gulati K., Mortazavi Y., Evans B.L. Statistical modeling of asynchronous impulsive noise in powerline communication networks // 2011 IEEE Global Telecommunications ConferenceGLOBECOM 2011. – IEEE, 2011. – Pp. 1-6.
  37. Nassar M., Dabak A., Kim I.H., Pande T., Evans B.L. Cyclostationary noise modeling in narrowband powerline communication for smart grid applications // 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). – IEEE, 2012. – Pp. 3089-3092.
  38. Zimmermann M., Dostert K. Analysis and modeling of impulsive noise in broad-band powerline communications // IEEE transactions on Electromagnetic compatibility. – 2002. – Vol. 44. – No. 1. – Pp. 249-258.
  39. Klatt M., Meyer, J., Schegner, P., Koch, A., Myrzik, J., Darda, T., Eberl, G. Emission levels above 2 kHz-Laboratory results and survey measurements in public low voltage grids // 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013). – 2013.
  40. Fernandez I., Uribe-Perez, N., Eizmendi, I., Angulo, I., de la Vega, D., Arrinda, A., Arzuaga, T. Characterization of non-intentional emissions from distributed energy resources up to 500 kHz: A case study in Spain // International Journal of Electrical Power & Energy Systems. – 2019. – Vol. 105. – Pp. 549-563.
  41. Yalcin T., Ozdemir, M., Kostyla, P., Leonowicz, Z. Analysis of supra-harmonics in smart grids // 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). – IEEE, 2017. – Pp.1-4.
  42. Bollen, M., Olofsson, M., Larsson, A., Ronnberg, S., Lundmark, M. Standards for supraharmonics (2 to 150 kHz) // IEEE Electromagnetic Compatibility Magazine. – 2014. – Vol. 3. – No. 1. – Pp. 114-119.
  43. Larsson, E. A., Bollen, M. H., Wahlberg, M. G., Lundmark, C. M., Ronnberg, S. K. Measurements of high-frequency (2–150 kHz) distortion in low-voltage networks // IEEE Transactions on Power Delivery. – 2010. – Vol. 25. – No. 3. – Pp. 1749-1757.
  44. Larsson E. O. A., Bollen M. H. J. Measurement result from 1 to 48 fluorescent lamps in the frequency range 2 to 150 kHz // Proceedings of 14th International Conference on Harmonics and Quality of Power-ICHQP 2010. – IEEE, 2010. – Pp. 1-8.
  45. Ronnberg, S. K., Bollen, M. H. Emission from four types of LED lamps at frequencies up to 150 kHz // 2012 IEEE 15th International Conference on Harmonics and Quality of Power. – IEEE, 2012. – Pp. 451-456.
  46. Zimmerman R., Murillo-Sanchez C., Thomas R. MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education // IEEE Transactions on Power Systems. – 2011. – Vol. 26. – Pp. 12–19.
  47. Kuramoto, Y. Self-entrainment of a population of coupled non-linear oscillators // Springer Berlin Heidelberg. – 1975. – Vol. 39. Pp. 420–422.
  48. Canizares C., Fernandes T., Geraldi Jr. E., Gerin-Lajoie L., Gibbard M., Hiskens I., Kersulis J., Kuiava R., Lima L., De Marco F., Martins N., Pal B. C., Piardi A., Ramos R., J. dos Santos, Silva D., Singh A. K., Tamimi B., Vowles D. IEEE PES Technical Report TR-18: Benchmark Systems for Small-Signal Stability Analysis and Control // IEEE PES Resource Center. – 2015. – Pp.390.
Received: 
06.08.2024
Accepted: 
18.09.2024
Available online: 
02.12.2024