ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Kulminskiy D. D., Ponomarenko V. I., Prokhorov M. D. Influence of inertial properties and delay of the mean field on the collective dynamics of globally coupled bistable delayed-feedback oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2018, vol. 26, iss. 1, pp. 4-20. DOI: 10.18500/0869-6632-2018-26-1-4-20

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 123)
Article type: 

Influence of inertial properties and delay of the mean field on the collective dynamics of globally coupled bistable delayed-feedback oscillators

Kulminskiy Danil Dmitrievich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Ponomarenko Vladimir Ivanovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Prokhorov Mihail Dmitrievich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

The features of collective dynamics of oscillators are studied in an ensemble of identical bistable time-delay systems globally coupled via the mean field. The influence of inertial proper-ties and delay of the mean field on the collective dynamics of oscillators is considered. It is shown that a variety of oscillation regimes in the ensemble is caused by the presence of bistable states with considerably different basic frequencies in coupled oscillators. Under the correspond-ing choice of the mean field parameters, it allows us to ensure different phase shifts of the mean field signal for oscillators in different regimes of oscillations. It is shown that under a specific choice of initial conditions, two clusters are formed in the ensemble. Depending on the phase shift of the mean field, each of these clusters can contain either synchronous or asynchronous oscillators. If the coupling is attractive for oscillators in one cluster and repulsive for oscillators in another cluster, a chimera state takes place in the ensemble, in which a cluster with synchronized oscillators coexists with a cluster with non-synchronized oscillators. The obtained results can be useful for solving the problem of controlling the oscillation regimes in the networks of globally coupled oscillators in situations, where it is possible to vary the mean field parameters.

  1. Afraimovich V.S., Nekorkin V.I., Osipov G.V., Shalfeev V.D. Stability, Structures, and Chaos in Nonlinear Synchronization Networks. Eds. Gaponov-Grekhov A.V., Rabinovich M.I. Gorky: IPF AN USSR, 1989 (in Russian).
  2. Boccaletti S., Latora V., Moreno Y., Chavez M., Hwang D.U. Complex networks: Structure and dynamics // Phys. Rep. 2006. Vol. 424. P. 175.
  3. Kuramoto Y., Battogtokh D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators // Nonlinear Phenom. Complex Syst. 2002. Vol. 5. P. 380.
  4. Abrams D.M., Strogatz S.H. Chimera states for coupled oscillators // Phys. Rev. Lett. 2004. Vol. 93. 174102.
  5. Laing C.R. Chimeras in networks with purely local coupling // Phys. Rev. E. 2015. Vol. 92. 050904(R).
  6. Yeldesbay A., Pikovsky A., Rosenblum M. Chimeralike states in an ensemble of globally coupled oscillators // Phys. Rev. Lett. 2014. Vol. 112. 144103.
  7. Mishra A., Hens C., Bose M., Roy P.K., Dana S.K. Chimeralike states in a network of oscillators under attractive and repulsive global coupling // Phys. Rev. E. 2015. Vol. 92. 062920.
  8. Semenova N., Zakharova A., Anishchenko V., Scholl E. Coherence-resonance chimeras in a network of excitable elements // Phys. Rev. Lett. 2016. Vol. 117. 014102.
  9. Ulonska S., Omelchenko I., Zakharova A., Scholl E. Chimera states in networks of van der Pol oscillators with hierarchical connectivities // Chaos. 2016. Vol. 26. 094825.
  10. Omelchenko I., Maistrenko Y., Hovel P., Scholl E. Loss of coherence in dynamical networks: Spatial chaos and chimera states // Phys. Rev. Lett. 2011. Vol. 106. 234102.
  11. Hagerstrom A.M., Murphy T.E., Roy R., Hoevel P., Omelchenko I., Scholl E. Experimental observation of chimeras in coupled-map lattices // Nat. Phys. 2012. Vol. 8. P. 658.
  12. Sethia G.C., Sen A., Johnston G.L. Amplitude-mediated chimera states // Phys. Rev. E. 2013. Vol. 88. 042917.
  13. Zakharova A., Kapeller M., Scholl E. Chimera death: Symmetry breaking in dynamical networks // Phys. Rev. Lett. 2014. Vol. 112. 154101.
  14. Kapitaniak T., Kuzma P., Wojewoda J., Czolczynski K., Maistrenko Y. Imperfect chimera states for coupled pendula // Sci. Rep. 2014. Vol. 4. P. 6379.
  15. Gambuzza L.V., Buscarino A., Chessari S., Fortuna L., Meucci R., Frasca M. Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators // Phys. Rev. E. 2014. Vol. 90. 032905.
  16. Schmidt L., Krischer K. Clustering as a prerequisite for chimera states in globally coupled systems // Phys. Rev. Lett. 2015. Vol. 114. 034101.
  17. Kemeth F.P., Haugland S.W., Schmidt L., Kevrekidis I.G., Krischer K. A classification scheme for chimera states // Chaos. 2016. Vol. 26. 094815.
  18. Hart J.D., Bansal K., Murphy T.E., Roy R. Experimental observation of chimera and cluster states in a minimal globally coupled network // Chaos. 2016. Vol. 26. 094801.
  19. Shepelev I.A., Vadivasova T.E., Bukh A.V., Strelkova G.I., Anishchenko V.S. New type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal interaction // Phys. Lett. A. 2017. Vol. 381. P. 1398.
  20. Buck J., Buck E. Mechanism of rhythmic synchronous flashing of fireflies // Science. 1968. Vol. 159. P. 1319.
  21. Danø S., Sørensen P.G., Hynne F. Sustained oscillations in living cells // Nature (London). 1999. Vol. 402. P. 320.
  22. Neda Z., Ravasz E., Brechet Y., Vicsek T., Barabasi A.-L. Self-organizing processes: The sound of many hands clapping // Nature (London). 2000. Vol. 403. P. 849.
  23. Dallard P., Fitzpatrick T., Flint A., Low A., Smith R.R., Willford M., Roche M. London Millennium Bridge: Pedestrian-induced lateral vibration // J. Bridge Eng. 2001. Vol. 6. P. 412.
  24. Kiss I., Zhai Y., Hudson J. Emerging coherence in a population of chemical oscillators // Science. 2002. Vol. 296. P. 1676.
  25. Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press, 1993.
  26. Ikeda K., Matsumoto K. High-dimensional chaotic behavior in systems with timedelayed feedback // Physica D. 1987. Vol. 29, P. 223.
  27. Prokhorov M.D., Ponomarenko V.I. Estimation of coupling between time-delay systems from time series // Phys. Rev. E. 2005. Vol. 72. 016210.
  28. Ashwin P., Burylko O. Weak chimeras in minimal networks of coupled phase oscillators // Chaos. 2015. Vol. 25. 013106.
  29. Rohm A., Bohm F., Ludge K. Small chimera states without multistability in a globally delay-coupled network of four lasers // Phys. Rev. E. 2016. Vol. 94. 042204.
  30. Ponomarenko V.I., Kul’minskii D.D., Karavaev A.S., Prokhorov M.D. Tech. Phys. Lett. 2017. Vol. 43. P. 309. 
Short text (in English):
(downloads: 69)