ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Kanakov O. I., Flah S. ., Shalfeev V. D. Introduction to discrete breathers theory. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 3, pp. 112-128. DOI: 10.18500/0869-6632-2008-16-3-112-128

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 183)
Article type: 

Introduction to discrete breathers theory

Kanakov Oleg Igorevich, Lobachevsky State University of Nizhny Novgorod
Flah Sergej , Institute of Complex Systems of the Max Planck Society
Shalfeev Vladimir Dmitrievich, Lobachevsky State University of Nizhny Novgorod

We make a basic review of the theory of discrete breathers – spatially localized solutions in nonlinear lattices. We describe the mathematical conditions and physical prerequisites of their existence and methods of their study by example of one-dimensional lattices. We consider localized solutions with infinite and finite lifetimes. We include some new results within the problems of discrete breather generation resulting from harmonic wave destruction and controlling the formation of rotational breather solutions by external forcing.

Key words: 
  1. Flach S, Willis CR. Discrete breathers. Physics Reports. 1998;295(5):181–264. DOI: 10.1016/S0370-1573(97)00068-9.
  2. Flach S, Gorbach AV. Computational studies of discrete breathers – from basics to competing length scales. Int. J. Bifurc. Chaos. 2006;16(6):1645–1669. DOI: 10.1142/S0218127406015581.
  3. Flach S, Gorbach A. Discrete breathers: advances in theory and applications. Physics Reports. 2008;467(1–3):1–116. DOI: 10.1016/j.physrep.2008.05.002.
  4. MacKay RS, Aubry S. Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity. 1994;7(6):1623–1645. DOI: 10.1088/0951-7715/7/6/006.
  5. Sato M, Sievers AJ. Direct observation of the discrete character of intrinsic localized modes in an antiferromagnet. Nature. 2004;432(7016):486–488. DOI: 10.1038/nature03038.
  6. Fleischer JW, Carmon T, Segev M, Efremidis NK, Christodoulides DN. Observation of discrete solitons in optically induced real time waveguide arrays. Phys. Rev. Lett. 2003;90(2):023902. DOI: 10.1103/PhysRevLett.90.023902.
  7. Sato M, Hubbard BE, Sievers AJ, Ilic B, Czaplewski DA, Craighead HG. Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. Phys. Rev. Lett. 2003;90(4):044102. DOI: 10.1103/PhysRevLett.90.044102.
  8. Zalalutdinov MK, Baldwin JW, Marcus MH, Reichenbach RB, Parpia JM, Houston BH. Two-dimensional array of coupled nanomechanical resonators. Applied Physics Letters. 2006;88(14):143504. DOI: 10.1063/1.2190448.
  9. Takeno S, Peyrard M. Nonlinear modes in coupled rotator models. Physica D. 1996;92(3):140–163. DOI: 10.1016/0167-2789(95)00284-7.
  10. Miroshnichenko A, Flach S, Fistul M, Zolotaryuk Y, Page JB. Breathers in Josephson junction ladders: resonances and electromagnetic waves spectroscopy. Phys. Rev. E. 2001;64(6):066601. DOI: 10.1103/PhysRevE.64.066601.
  11. Binder P, Abraimov D, Ustinov AV. Diversity of discrete breathers observed in a Josephson ladder. Phys. Rev. E. 2000;62(2):2858–2862. DOI: 10.1103/PhysRevE.62.2858.
  12. Venikov VA. Transient Electromechanical Processes in Electrical Systems. Moscow: Vysshaya Shkola; 1978. 472 p. (in Russian).
  13. Afraimovich VS, Nekorkin VI, Osipov GV, Shalfeev VD. Stability, Structures and Chaos in Nonlinear Synchronization Networks. World Scientific; 1995. 260 p. DOI: 10.1142/2412.
  14. Ostrovsky LA, Potapov AI. Introduction to the Theory of Modulated Waves. Moscow: Fizmatlit; 2003. 359 p. (in Russian).
  15. Denzler J. Nonpersistence of breather families for the perturbed sine Gordon equation. Commun. Math. Phys. 1993;158(2):397–430. DOI: 10.1007/BF02108081.
  16. Ovchinnikov AA. Localized long-lived vibrational states in molecular crystals. Sov. JETP. 1969;30:147.
  17. Takeno S, Kisoda K, Sievers AJ. Intrinsic localized vibrational modes in anharmonic crystals. Prog. Theor. Phys. Suppl. 1988;94:242–269. DOI: 10.1143/PTPS.94.242.
  18. Campbell DK, Peyrard M. Chaos and order in nonintegrable model field theories. In: Campbell DK, editor. CHAOS – Soviet-American Perspectives on Nonlinear Science. New York: American Institute of Physics; 1990. P. 305.
  19. Aubry S. Breathers in nonlinear lattices: existence, linear stability and quantization. Physica D. 1997;103(1–4):201–250. DOI: 10.1016/S0167-2789(96)00261-8.
  20. Marin JL, Aubry S. Breathers in nonlinear lattices: Numerical calculation from the anticontinuous limit. Nonlinearity. 1996;9(6):1501–1529. DOI: 10.1088/0951-7715/9/6/007.
  21. Flach S, Willis CR, Olbrich E. Integrability and localized excitations in nonlinear discrete systems. Phys. Rev. E. 1994;49(1):836–850. DOI: 10.1103/PhysRevE.49.836.
  22. Flach S, Kladko K, MacKay RS. Energy thresholds of discrete breathers in one-, two- and three-dimensional lattices. Phys. Rev. Lett. 1997;78(7):1207–1210. DOI: 10.1103/PhysRevLett.78.1207.
  23. Kosevich AM, Kovalev AS. Self-localization of vibrations in a one-dimensional anharmonic chain. Sov. JETP. 1975;40(5):891–896.
  24. Kivshar YS, Peyrard M. Modulational instabilities in discrete lattices. Phys. Rev. A. 1992;46(6):3198–3205. DOI: 10.1103/PhysRevA.46.3198.
  25. Daumont I, Dauxois T, Peyrard M. Modulational instability: first step towards energy localization in nonlinear lattices. Nonlinearity. 1997;10(3):617–631. DOI: 10.1088/0951-7715/10/3/003.
  26. Peyrard M. The pathway to energy localization in nonlinear lattices. Physica D. 1998;119(1–2):184–199. DOI: 10.1016/S0167-2789(98)00079-7.
  27. Cretegny T, Dauxois T, Ruffo S, Torcini A. Localization and equipartition of energy in the beta-FPU chain: Chaotic breathers. Physica D. 1998;121(1–2):109–126. DOI: 10.1016/S0167-2789(98)00107-9.
  28. Johansson M, Morgante AM, Aubry S, Kopidakis G. Standing wave instabilities, breather formation and thermalization in a Hamiltonian anharmonic lattice. Eur. Phys. J. B. 2002;29(2):279–283. DOI: 10.1140/epjb/e2002-00301-0.
  29. Ivanchenko MV, Kanakov OI, Shalfeev VD, Flach S. Discrete breathers in transient processes and thermal equilibrium. Physica D. 2004;198(1):120–135. DOI: 10.1016/j.physd.2004.08.025.
  30. Tsironis GP, Aubry S. Slow relaxation phenomena induced by breathers in nonlinear lattices. Phys. Rev. Lett. 1996;77(26):5225–5228. DOI: 10.1103/physrevlett.77.5225.
  31. Bikaki A, Voulgarakis NK, Aubry S, Tsironis GP. Energy relaxation in discrete nonlinear lattices. Phys. Rev. E. 1999;59(1):1234–1237. DOI: 10.1103/PhysRevE.59.1234.
  32. Flach S, Miroshnichenko AE, Fistul MV. Wave scattering by discrete breathers. Chaos. 2003;13(2):596–609. DOI: 10.1063/1.1561627.
  33. Miroshnichenko AE, Schuster M, Flach S, Fistul MV, Ustinov AV. Resonant plasmon scattering by discrete breathers in Josephson junction ladders. Phys. Rev. B. 2005;71(17):174306. DOI: 10.1103/PhysRevB.71.174306.
  34. Flach S, Kladko K, Willis CR. Localized excitations in two-dimensional lattices. Phys. Rev. E. 1994;50(3):2293–2303. DOI: 10.1103/PhysRevE.50.2293.
  35. MacKay RS. Discrete breathers: classical and quantum. Physica A. 2000;288(1–4):174–198. DOI: 10.1016/S0378-4371(00)00421-0.
  36. Flach S, Fleurov V, Ovchinnikov AA. Tunneling of localized excitations: Giant enhancement due to fluctuations. Phys. Rev. B. 2001;63(9):094304. DOI: 10.1103/PhysRevB.63.094304.
  37. Flach S, Ivanchenko MV, Kanakov OI. q-Breathers and the Fermi–Pasta–Ulam problem. Phys. Rev. Lett. 2005;95(6):064102. DOI: 10.1103/PhysRevLett.95.064102.
  38. Flach S, Ivanchenko MV, Kanakov OI, Mishagin KG. Periodic orbits, localization in normal mode space and the Fermi–Pasta–Ulam problem. American Journal of Physics. 2008;76(4):453–459. DOI: 10.1119/1.2820396.
Short text (in English):
(downloads: 90)