For citation:
Astakhov V. V., Balanov A. G., Sosnovtseva O. V., Vadivasova T. E. Loss of chaos synchronization in coupled Rossler systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 1999, vol. 7, iss. 5, pp. 26-32. DOI: 10.18500/0869-6632-1999-7-5-26-32
Loss of chaos synchronization in coupled Rossler systems
We study process of loss of complete chaos synchronization in interacting oscillators which demonstrates cascade of period—doubling bifurcations. It is shown that bifurcations of main family of saddle cycles embedded in chaotic attractor lead to loss of the synchronous regime robustness and appearance of limit sets located in vicinity of symmetrical subspace. Bifurcations of nonsymmetrical limit sets lead to formation of complex structure of attractor basins. The transition to hyperchaos regime which appears as a result of merge of some chaotic sets completes the loss of chaos synchronization.
- Fujisaka H, Yamada Т. Stability theory оf synchronized motion in coupled оscillator systems. Prog. Theor. Phys. 1983;69(1):32-47. DOI: 10.1143/PTP.69.32.
- Pikovsky AS. On the interaction оf strange attractors. Z. Phys. B-Condensed Matter. 1984;55:149-154. DOI: 10.1007/BF01420567.
- Kuznetsov SP. Universality and similarity in the behavior of related Feigenbaum systems. Radiophysics and Quantum Electronics. 1985;28(8):991-1007. (in Russian).
- Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization of oscillations in dissipative systems. Radiophysics and Quantum Electronics. 1986;29(9):1050-1060. (in Russian).
- Ресоrа LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64(8):821-824. DOI: 10.1103/PhysRevLett.64.821.
- Pikovsky AS, Grassberger P. Symmetry breaking bifurcations for coupled chaotic attractors. J. Phys. А: Math. Gen. 1991;24(19):4587-4597. DOI: 10.1088/0305-4470/24/19/022.
- Ashwin Р, Buescu J, Stewart I. From attractor to chaotic saddle: а tale оf transverse instability. Nonlinearity. 1996;9(3):703-737. DOI: 10.1088/0951-7715/9/3/006.
- Ashwin Р, Buescu J, Stewart I. Bubbling оf attractors and synchronization оf chaotic oscillators. Phys. Lett. A. 1994;193(2):126-139. DOI: 10.1016/0375-9601(94)90947-4.
- Alexander JC, Kan I, Yorke JA, You Z. Riddled basins. Int. J. Bifurc. Chaos. 1992;2:795-813. DOI: 10.1142/S0218127492000446.
- Kapitaniak T, Maistrenko Yu, Stefanski А, Brindley J. Bifurcations from locally to globally riddled basins. Phys. Rev. E. 1998;57(6):6253-6256. DOI: 10.1103/PhysRevE.57.R6253.
- Lai Y-C, Grebogi C, Yorke JA, Venkataramani SC. Riddling bifurcation in chaotic dynamical systems. Phys. Rev. Lett. 1996;77(1):55-58. DOI: 10.1103/PhysRevLett.77.55.
- Astakhov V, Shabunin A, Kapitaniak T, Anishchenko V. Loss of chaos synchronization through the sequence оf bifurcations оf saddle periodic orbits. Phys. Rev. Lett. 1997;79(6):1014-1017. DOI: 10.1103/PhysRevLett.79.1014.
- Rulkov NF. Images оf synchronized chaos: Experiments with circuits. Chaos. 1996;6(3):262-279. DOI: 10.1063/1.166174.
- 204 reads