ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Shabunin A. V. Multistability in an ensemble of phase oscillators with long-distance couplings. Izvestiya VUZ. Applied Nonlinear Dynamics, 2016, vol. 24, iss. 3, pp. 38-53. DOI: 10.18500/0869-6632-2016-24-3-38-53

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 72)
Language: 
Russian
Article type: 
Article
UDC: 
517.9, 621.372

Multistability in an ensemble of phase oscillators with long-distance couplings

Autors: 
Shabunin Aleksej Vladimirovich, Saratov State University
Abstract: 

The work is devoted to investigation of multistability of running waves in a ring of periodic oscillators with diffusive non-local couplings. It analyzes the influence of long-range couplings and their change with distance on the stability of spatially-periodic regimes with different wave numbers. The research are carried out by numerical (computer) experiments. The system under study is an ensemble of identical phase oscillators. It is, on the one hand the most simple model providing opportunities for analytical studies; on the other hand its properties can be generalized to an arbitrary ensemble of almost harmonic self sustained oscillators. The studies have shown that multistability is observed in the ensemble of phase oscillators as a set of coexisting modes of waves running along the ring, the every of which characterizing by its own phase-shift between oscillations in the neighboring sites. In the case of stationary or slowly varying couplings a running wave mode remains stable while the total phase shift on the interval of interaction keeps to be less than ?/2. When the couplings are decreased sufficiently fast, the stabilization of the maximum value of the phase shift is observed, so the further increase of range of interaction no longer affects the number of coexisting modes. Thus, the multistability keeps to exist in an ensemble with an arbitrarily distance of interconnection. The study the basins of attraction of the running waves have demonstrated that basins of long-wavelength modes are increased and simultaneously basins of short-wavelength modes are decreased while the range of interconnection grows. 

Reference: 
  1. Blekhman I.I., Landa P.S., Rosenblum M.G. // Appl. Mech. Rev. 1995. Vol. 11, part 1. P. 733–752.
  2. Anishchenko V.S., Vadivasova T.E. // Journal of Communications Technology and Electronics, 2002. Vol. 47, No 2. P. 117–148.
  3. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, 2003.
  4. Malafeev V.M., Polyakova M.S., Romanovsky Yu.M. // Izv. Vyssh. Uchebn. Zaved., Radiofizika. 1970. Vol. 13. P. 936 (in Russian).
  5. Mynbaev D.K., Shilenkov M.I. // Radiotekhnika i elektronika. 1981. No 2. P. 361 (in Russian).
  6. Maltzev A.A., Silaev A.M. // Izv. Vyssh. Uchebn. Zaved., Radiofizika. 1979. Vol. 22. P. 826 (in Russian).
  7. Dvornikov A.A., Utkin G.M., Chukov A.M. // Izv. Vyssh. Uchebn. Zaved., Radiofizika, 1984. Vol. 27. P. 1388 (in Russian).
  8. Ermentrout G.B. // J. of Math. Biol. 1985. Vol. 23. P. 55.
  9. Shabunin A.V., Akopov A.A., Astakhov V.V., Vadivasova T.E. // Izvestiya VUZ. Applied Nonlinear Dynamics. 2005. Vol. 13, No 4. P. 37–54 (in Russian).
  10. Matias M.A., Guemez J., Perez-Munuzuri V., Marino I.P., Lorenzo M.N., Perez-Villar V. // Phys. Rev. Lett. 1997. Vol. 78, N 2. P. 219-222.
  11. Marino I.P., Perez-Munuzuri V., Perez-Villar V., Sanchez E., Matias M.A. // Physica D. 2000. Vol. 128. 224–235.
  12. Shabunin A., Astakhov V., Anishchenko V. // Int. J. of Bifurcation and Chaos. 2002. Vol. 12, N 8. P. 1895–1908.
  13. Nekorkin V.I., Makarov V.A., Velarde M.G. // Int. J. Bifurcation and Chaos. 1996. Vol. 6. P. 1845.
  14. Kuramoto Y. Chemical Oscillations Waves and Turbulence. Berlin: Springer, 1984.
  15. Ermentrout G.B., Kopell N. // Comm. Pure Appl. Math. 1986. Vol. 49. P. 623–660.
  16. Ermentrout G.B., Kopell N. // SIAM J. of Appl. Math. 1990. Vol. 50. P. 1014–1052.
  17. Ermentrout G.B. // J. of Math. Biol. 1985. Vol. 22. P. 1–9.
  18. Crawford J.D., Davies K.T.R. // Physica D. 1990. Vol. 125. P. 1–46.
  19. Ren L., Ermentrout G.B. // Physica D. 2000. Vol. 143. P. 56.
  20. Astakhov V., Shabunin A., Uhm W., Kim S. // Phys. Rev. E. 2001. Vol. 63. P. 056212.
  21. Bezruchko B.P., Prokhorov M.D., Seleznev E.P. // Chaos, Solitons anf Fractals. 2003. Vol. 15. P. 695–711.
  22. Gurtovnik A.S., Neimark Yu.I. // Dinamicheskie sistemy: Mezhvuzovskiy sbornik nauchnyh trudov. Nizhegorodskiy Univercitet. 1991. P. 84 (in Russian).
Received: 
16.05.2016
Accepted: 
29.06.2016
Published: 
30.06.2016
Short text (in English):
(downloads: 50)