The article published as Early Access!
Multistability of synchronous modes in a multimachine power grid with a common load and their global and non-local stability
The purpose of this work is studying the dynamics of the power grid consisting of an arbitrary number of synchronous generators supplying a common passive linear load. We focus on searching the conditions for the existence and stability of synchronous modes, i.e. the main operating modes of a power grid. The possibility of the existence of non-synchronous (quasi-synchronous and asynchronous) modes is investigated.
Methods. To study the dynamics of a power grid we use the effective network model in the form of an ensemble of globally coupled nodes-generators. The state of every node is described by the swing equation. The approach for reducing the effective network to the network with a hub topology (star topology) is proposed. We use numerical methods to construct a partition of the parameter space into areas with different operating modes of the power grid.
Results. The conditions for the existence, stability and multistability of synchronous modes are obtained. The main characteristics of these modes are considered, such as the power supplied by generators to the grid and the distribution of currents along transmission lines. We constructed the partition of the power gird parameter space into areas with different dynamics.
Conclusion. The power grid consisting of an arbitrary number of synchronous generators supplying a common passive linear load has been studied. We shown the presence of two types of synchronous modes: homogeneous and inhomogeneous. The first is characterized by equal powers and currents flowing through all load supply paths except one. The second provides another additional path, which differs from the others in current and transmitted power. Moreover, the currents flowing along the same path, but in various modes, differ. The presence of high multistability of inhomogeneous synchronous modes has been established. The possibility of coexistence of homogeneous and inhomogeneous synchronous modes, as well as quasi-synchronous and asynchronous modes, is shown. In the power grid parameters space we found areas corresponding both the existence of only synchronous modes and their coexistence with quasi-synchronous and/or asynchronous modes.
- Zhdanov PS. Stability Issues for Electrical Systems. M.: Energy; 1979. 456 p. (in Russian).
- Venikov VA. Transient electromechanical processes in electrical systems. M.: Vysshaya shkola; 1985. 536 p. (in Russian).
- Idelchik VI. Electrical systems and networks. M.: Energoatomizdat; 1989. 592 p. (in Russian).
- Kundur P, Balu NJ, Lauby MG. Power System Stability and Control. New York: McGraw-Hill Education; 1994. 1176 p.
- Sauer P, Pai A. Power System Dynamics and Stability. Prentice-Hall: Englewood Cliffs; 1998. 357 p.
- Anderson PM, Fouad AA. Power System Control and Stability. NJ: IEEE, Piscataway; 2003. 672 p.
- Horowitz SH, Phadke AG, Henville CF. Power System Relaying. New York: John Wiley & Sons; 2008. 528 p.
- Machowski J, Bialek J, Bumby D. Power System Dynamics: Stability and Control. New York: John Wiley & Sons; 2008. 629 p.
- Grainger JJ., Stevenson WD. Power System Analysis. New York: McGraw-Hill Education; 2016. 787 p.
- Park RH. Two-reaction theory of synchronous machines: Generalized method of analysis – part I. Transactions of the American Institute of Electrical Engineers. 1929;48(3):716–730. DOI: 10.1109/T-AIEE.1929.5055275.
- Gorev AA. Transient processes of a synchronous machine. M.: Gosenergoizdat; 1950. 553 p. (in Russian).
- Wiatros-Motyka M. et al. Global Electricity Review 2023. New York: Ember; 2023. 163 p.
- Dobson I, Carreras BA, Lynch VE, Newman DE. Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization. Chaos. 2007;17(2):026103. DOI: 10.1063/1.2737822.
- Schafer B, Witthaut D, Timme M, Latora V. Dynamically induced cascading failures in power grids. Nat. Commun. 2018;9(1):1975.
- Bialek JW. Why has it happened again? Comparison between the UCTE blackout in 2006 and the blackouts of 2003. IEEE Lausanne Power Tech, Lausanne, Switzerland, 2007. P. 51–56. DOI: 10.1109/PCT.2007.4538291.
- Li C, Sun Y, Chen X. Analysis of the blackout in Europe on November 4, 2006. In 2007 International Power Engineering Conference (IPEC 2007). 2007. P. 939–944.
- Vleuten E, Lagendijk V. Interpreting transnational infrastructure vulnerability: European blackout and the historical dynamics of transnational electricity governance. Energy Policy. 2010;38(4):2053– 2062. DOI: 10.1016/j.enpol.2009.11.030.
- Veloza OP, Santamaria F. Analysis of major blackouts from 2003 to 2015: classification of incidents and review of main causes. Electr. J. 2016;29(7):42–49. DOI: 10.1016/j.tej.2016.08.006.
- Shao Y, Tang T, Yi J, Wang A. Analysis and lessons of blackout in Turkey power grid on March 31. AEPS. 2016;40(23):9–14. DOI: 10.7500/AEPS20160412004.
- Gajduk A, Todorovski M, Kocarev L Stability of power grids: An overview. The European Physical Journal Special Topics. 2014;223(12):2387–2409. DOI: 10.1140/epjst/e2014-02212-1.
- Filatrella G, Nielsen AH, Pedersen NF. Analysis of a power grid using a Kuramoto-like model. The European Physical Journal B. 2008;61(4):485–491. DOI: 10.18500/0869-6632-00312810.1140/epjb/e2008-00098-8.
- Nitzbon J, Schultz P, Heitzig J, Kurths J, Hellmann F. Deciphering the imprint of topology on nonlinear dynamical network stability. New J. Phys. 2017;19(3):033029. DOI: 10.1088/1367-2630/aa6321.
- Kim H, Lee SH, Davidsen J, Son S. Multistability and variations in basin of attraction in power-grid systems. New J. Phys. 2018;20(11):113006. DOI: 10.1088/1367-2630/aae8eb.
- Hellmann F, Schultz P, Jaros P, Levchenko R., Kapitaniak T., Kurths J., Maistrenko Y Networkinduced multistability through lossy coupling and exotic solitary states. Nat. Commun. 2020;11(1). DOI: 10.1038/s41467-020-14417-7.
- Khramenkov VA, Dmitrichev AS, Nekorkin VI. A new scenario for Braess’s paradox in power grids. Chaos. 2022;32(11):113116. DOI: 10.1063/5.0093980.
- Gupta PC, Singh PP. Chaos, multistability and coexisting behaviours in small-scale grid: impact of electromagnetic power, random wind energy, periodic load and additive white Gaussian noise. Pramana. 2022;97(1). DOI: 10.1007/s12043-022-02478-w.
- Korsak AJ. On the Question of uniqueness of stable load-flow solutions. IEEE Transactions on Power Apparatus and Systems. 1972;91(3):1093–1100. DOI: 10.1109/TPAS.1972.293463.
- Casazza JA. Blackouts: Is the Risk Increasing? Electrical World. 1998;212(4):62–64.
- Janssens N, Kamagate A. Loop flows in a ring AC power system. International Journal of Electrical Power & Energy Systems. 2003;25(8):591–597. DOI: 10.1016/S0142-0615(03)00017-6.
- Coletta T, Delabays R, Adagideli I, Jacquod P. Topologically protected loop flows in high voltage AC power grids. New Journal of Physics. 2016;18(10):103042. DOI: 10.1088/1367-2630/18/10/103042.
- Delabays R, Coletta T, Jacquod P. Multistability of phase-locking and topological winding numbers in locally coupled Kuramoto models on single-loop networks. Journal of Mathematical Physics. 2016;57(3):032701. DOI: 10.1063/1.4943296.
- Manik D, Timme M, Witthaut D. Cycle flows and multistability in oscillatory networks. Chaos. 2017;27(8):083123. DOI: 10.1063/1.4994177.
- Delabays R, Jafarpour S, Bullo F. Multistability and anomalies in oscillator models of lossy power grids. Nat. Commun. 2022;13(1):5238. DOI: 10.1038/s41467-022-32931-8.
- Venkatasubramanian V, Schattler H, Zaborszky J. Voltage dynamics: study of a generator with voltage control, transmission, and matched MW load. IEEE Transactions on Automatic Control. 1992;37(11):1717–1733.
- Nguyen HD, Turitsyn K. Voltage multistability and pulse emergency control for distribution system with power flow reversal. IEEE Transactions on Smart Grid. 2014;6(6):2985–2996.
- Balestra C, Kaiser F, Manik D, Witthaut D. Multistability in lossy power grids and oscillator networks. Chaos. 2019;29(12):123119. DOI: 10.1063/1.5122739.
- Khramenkov VA, Dmitrichev AS, Nekorkin VI. Bistability of operating modes and their switching in a three-machine power grid. Chaos. 2023;33(10):103129. DOI: 10.1063/5.0165779.
- Kwatny H, Pasrija A, Bahar L. Static bifurcations in electric power networks: Loss of steady-state stability and voltage collapse. IEEE Transactions on Circuits and Systems. 1986;33(10):981–991. DOI: 10.1109/TCS.1986.1085856.
- Ayasun S, Nwankpa CO, Kwatny HG Computation of singular and singularity induced bifurcation points of differential-algebraic power system model. IEEE Transactions on Circuits and Systems I: Regular Papers. 2004;51(8):1525–1538. DOI: 10.1109/TCSI.2004.832741.
- Thumler M, Zhang X, Timme M. Absence of pure voltage instabilities in the third-order model of power grid dynamics. Chaos. 2022;32(4):043105. DOI: 10.1063/5.0080284.
- Kalentionok EV. Electric power systems stability. Minsk: Technoperspectiva; 2008. 375 p.
- Bergen AR, Hill DJ. A structure preserving model for power system stability analysis. IEEE Transactions on Power Apparatus and Systems. 1981;PAS-100(1):25–35. DOI: 10.1109/TPAS.1981.316883.
- Nishikawa T, Motter AE. Comparative analysis of existing models for power grid synchronization. New J. Phys. 2015;17(1):015012. DOI: 10.1088/1367-2630/17/1/015012.
- Grzybowski JMV, Macau EEN, Yoneyama T. Power-grids as complex networks: emerging investigations into robustness and stability. In: Edelman M., Macau E., Sanjuan M. (eds) Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Understanding Complex Systems. Cham: Springer, 2019. P. 287-–315. https://doi.org/10.1007/978-3-319-68109-2_14.
- Kogler R, Plietzsch A, Schultz P, Hellmann F Normal form for grid-forming power grid actors. PRX Energy. 2022;1(1):013008.
- Rohden M, Sorge A, Timme M, Witthaut D. Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 2012;109(6):064101.
- Witthaut D, Timme M. Braess‘s paradox in oscillator networks, desynchronization and power outage. New J. Phys. 2012;14(8):083036.
- Fortuna L, Frasca M, Sarra-Fiore A. A network of oscillators emulating the Italian high-voltage power grid. International Journal of Modern Physics B. 2012;26(25):1246011. DOI: 10.1142/S0217979212460113.
- Lozano S, Buzna L, Diaz-Guilera A. Role of network topology in the synchronization of power systems. The European Physical Journal B. 2012;85(7):231. DOI: 10.1140/epjb/e2012-30209-9.
- Motter A. E., Myers S. A., Anghel M., Nishikawa T. Spontaneous synchrony in power-grid networks. Nature Physics. 2013;9:191–197.
- Khramenkov VA, Dmitrichev AS, Nekorkin VI. Dynamics and stability of two power grids with hub cluster topologies. Cybernetics and physics. 2019;8(1):29–99.
- Halekotte L, Feudel U. Minimal fatal shocks in multistable complex networks. Scientific Reports. 2020;10(1):11783. DOI: 10.35470/2226-4116-2019-8-1-29-33.
- Arinushkin PA, Anishchenko VS. Analysis of synchronous modes of coupled oscillators in power grids. Izvestiya VUZ, Applied Nonlinear Dynamics. 2018:26(3):63–78. DOI: 10.18500/0869- 6632-2018-26-3-62-77.
- Arinushkin PA, Anishchenko VS. The influence of the output power of the generators on the frequency characteristics of the grid in a ring topology. Izvestiya VUZ, Applied Nonlinear Dynamics. 2019;27(6):25–38. DOI: 10.18500/0869-6632-2019-27-6-25-38.
- Khramenkov VA, Dmitrichev AS, Nekorkin VI. Threshold stability of the synchronous mode in a power grid with hub cluster topology. Izvestiya VUZ, Applied Nonlinear Dynamics. 2020;28(2):120–139. DOI: 10.18500/0869-6632-2020-28-2-120-139.
- Arinushkin PA, Vadivasova TE. Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia. Chaos Solitons and Fractals. 2021;152(3):111343. DOI: 10.1016/j.chaos.2021.111343.
- Witthaut D, Timme M. Nonlocal failures in complex supply networks by single link additions. The European Physical Journal B. 2013;86(9):377. DOI: 10.1140/epjb/e2013-40469-4.
- Schafer B, Pesch T, Manik D, Gollenstede J., Lin G., Beck H.-P., Witthaut D., Timme M. Understanding Braess’ paradox in power grids. Nat. Commun. 2022;13(1):5396. DOI: 10.1038/s41467-022-32917-6.
- Witthaut D, Hellmann F, Kurths J, Kettemann S. Collective nonlinear dynamics and selforganization in decentralized power grids. Rev. Mod. Phys. 2022;94(1):015005. DOI: 10.1103/RevModPhys.94.015005.
- Dorfler F, Bullo F. On the critical coupling for Kuramoto oscillators. SIAM Journal on Applied Dynamical Systems. 2011;10(3):1070–1099. DOI: 10.1137/10081530X.
- Dorfler F, Bullo F. Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. SIAM Journal on Control and Optimization. 2012;50(3):1616–1642. DOI: 10.1137/110851584.
- Dorfler F, Chertkov M, Bullo F. Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. U.S.A. 2013;110(6):2005–2010. DOI: 10.1073/pnas.1212134110.
- Khramenkov VA, Dmitrichev AS, Nekorkin VI. Partial stability criterion for a heterogeneous power grid with hub structures. Chaos, Solitons and Fractals. 2021;152(6):111373. DOI: 10.1016/j.chaos.2021.111373.
- Molnar F, Nishikawa T, Motter AE. Asymmetry underlies stability in power grids. Nat. Commun. 2021;12(1):1457. DOI: 10.48550/arXiv.2103.10952.
- Menck PJ, Heitzig J, Marwan N, Kurths J. How basin stability complements the linear-stability paradigm. Nat. Phys. 2013;9(2):89–92. DOI: 10.1038/nphys2516.
- Menck PJ, Heitzig J, Kurths J, Schellnhuber JH. How dead ends undermine power grid stability. Nat. Commun. 2014;5(1):3969. DOI: 10.1038/ncomms4969.
- Hellmann F, Schultz P, Grabow C, Heitzig J. Survivability of deterministic dynamical systems. Sci. Rep. 2016;6(1):29654. DOI: 10.1038/srep29654.
- Klinshov VV, Nekorkin VI, Kurths J. Stability threshold approach for complex dynamical systems. New J. Phys. 2015;18(1):013004.
- Mitra C, Kittel T, Choudhary A, , Kurths J, Donner RV. Recovery time after localized perturbations in complex dynamical networks. New J. Phys. 2017;19(10):103004. DOI: 10.1088/1367-2630/aa7fab.
- Kim H, Lee MJ, Lee SH, Son SW. On structural and dynamical factors determining the integrated basin instability of power-grid nodes. Chaos. 2019;29(10):103132. DOI: 10.1063/1.5115532.
- Kim H. How modular structure determines operational resilience of power grids. New J. Phys. 2019;23(12):129501. DOI: 10.48550/arXiv.2104.09338.
- Klinshov VV, Kirillov SYu, Kurths J, Nekorkin VI. Interval stability for complex systems. New J. Phys. 2018;20(4):043040. DOI: 10.1088/1367-2630/aab5e6.
- Bessonov LA. Theoretical foundations of electrical engineering. M.: Vysshaya shkola; 1996. 587 p. (in Russian).
- Zhang X, Rehtanz C, Pal BC. Flexible AC transmission systems: modelling and control. Berlin, Heidelberg: Springer; 2012. 546 p.
- Gantmacher FR. The theory of matrices. New York: Chelsea Publishing Company; 1959. 374p.
- Gray RM. Toeplitz and circulant matrices: a review. Foundations and Trends in Communications and Information Theory. 2006;2(3):155–239. DOI: 10.1561/0100000006.
- Horn R, Johnson Ch. Matrix Analysis. Cambridge: Cambridge University Press; 1990. 369 p.
- 229 reads