ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Ivanchenko M. V., Kanakov O. I., Kotelnikov R. A., Krylov I. B. Nonlinear dynamics of synthetic gene regulatory circuits. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 4, pp. 52-134. DOI: 10.18500/0869-6632-2013-21-4-52-134

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 196)
Article type: 
537.86, 530.182

Nonlinear dynamics of synthetic gene regulatory circuits

Ivanchenko Mihail Vasilevich, Lobachevsky State University of Nizhny Novgorod
Kanakov Oleg Igorevich, Lobachevsky State University of Nizhny Novgorod
Kotelnikov Roman Andreevich, Lobachevsky State University of Nizhny Novgorod
Krylov Ilja Borisovich, Lobachevsky State University of Nizhny Novgorod

Built in a cell synthetic gene regulatory elements may function rather independently on the original natural system. Experimental and theoretical studies of small synthetic networks allow for a better understanding of fundamental dynamical mechanisms of gene regulation. This paper gives an introduction to the modern mathematical approaches and methods in this field, primarily in the framework of nonlinear dynamics.

  1. Jacob F, Monod J. Genetic regulatory mechanisms in synthesis of proteins. J. Mol. Biol. 1961;3:318–356. DOI:10.1016/S0022-2836(61)80072-7.
  2. Hasty J., McMillen D., Collins J.J. Engineered gene circuits. Nature. 2002;420(6912):224–230. DOI:10.1038/nature01257.
  3. Nandagopal N, Elowitz MB. Synthetic Biology: Integrated Gene Circuits. Science. 2011;333(6047):1244–1248. DOI:10.1126/science.1207084.
  4. Lu TK, Khalil AS, Collins JJ. Next-generation synthetic gene networks. Nat. Biotechnol. 2009;27(12):1139–1150. DOI: 10.1038/nbt.1591.
  5. Ro DK. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006;440(7086):940–943. DOI: 10.1038/nature04640.
  6. Lee SK. et al. Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 2008;19(6):556–563. DOI: 10.1016/j.copbio.2008.10.014.
  7. Sayler GS, Simpson ML, Cox CD. Emerging foundations: Nano-engineering and bio-microelectronics for environmental biotechnology. Curr. Opin. Microbiol. 2004;7(3):267–273. DOI: 10.1016/j.mib.2004.04.003.
  8. Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature. 2000;403(6767):339–342. DOI:10.1038/35002131.
  9. Elowitz MB, Leibler SA. synthetic oscillatory network of transcriptional regulators. Nature. 2000;403(6767):335–338. DOI: 10.1038/35002125.
  10. Stricker J. et al. A fast, robust and tunable synthetic gene oscillator. Nature. 2008;456(7221):516–519. DOI: 10.1038/nature07389.
  11. Friedland AE. et al. Synthetic gene networks that count. Science. 2009;324(5931):1199–1202. DOI: 10.1126/science.1172005.
  12. O’Brien EL, van Itallie E, Bennett MR. Modeling synthetic gene oscillators. Math. Biosciences. 2012;236(1):1–15. DOI: 10.1016/j.mbs.2012.01.001.
  13. Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 1910;40:4–7.
  14. Elowitz MB. et al. Stochastic gene expression in a single cell. Science. 2002;297(5584):1183–1186. DOI: 10.1126/science.1070919.
  15. Gillespie DT. Stochastic smulation of chemical kinetics. Annual Review of Physical Chemistry. 2007;58:35–55. DOI: 10.1146/annurev.physchem.58.032806.104637.
  16. Bel G, Munsky M, Nemenman I. The simplicity of completion time distributions for common complex biochemical processes. Phys. Biol. 2010;7(1):016003. DOI: 10.1088/1478-3975/7/1/016003.
  17. Ishiura M. et al. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science. 1998;281(5382):1519–1523. DOI: 10.1126/science.281.5382.1519.
  18. Goodwin BC. Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 1965;3:425–438. DOI: 10.1016/0065-2571(65)90067-1.
  19. Mather W. et al. Delay-induced degrade-and-fire oscillations in small genetic circuits. Phys. Rev. Lett. 2009;102(6):068105. DOI: 10.1103/PhysRevLett.102.068105.
  20. Johnson AD. et al. Lambda Repressor and cro-components of an efficient molecular switch. Nature. 1981;294(5838):217–223. DOI: 10.1038/294217a0.
  21. Nene N, Garcia-Ojalvo J, Zaikin A. Speed-dependent cellular decision making in nonequilibrium genetic circuits. PLoS ONE. 2012;7(3):e40085. DOI: 10.1371/journal.pone.0032779.
  22. Huang S. et al. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol. 2007;305(2):695–713. DOI: 10.1016/j.ydbio.2007.02.036.
  23. Cohen M. et al. Dynamic filopodia transmit intermittent delta-notch signaling to drive pattern refinement during lateral inhibition. Dev. Cell. 2010;19(1):78–89. DOI: 10.1016/j.devcel.2010.06.006.
  24. Widschwendter M. et al. Epigenetic stem cell signature in cancer. Nat. Genet. 2007;39(2):157–158. DOI: 10.1038/ng1941.
  25. Bennett MR. et al. Transient dynamics of genetic regulatory networks. Biophys. J. 2007;92(10):3501–3512. DOI: 10.1529/biophysj.106.095638.
  26. Buse O, Perez R, Kuznetsov A. Dynamical properties of the repressilator model. Phys. Rev. E. 2010;81(6):066206. DOI:10.1103/PhysRevE.81.066206.
  27. Muller S. et al. A generalized model of the repressilator. J. Math. Biol. 2006;53(6):905–937. DOI: 10.1007/s00285-006-0035-9.
  28. Strelkowa N, Barahona M. Transient dynamics around unstable periodic orbits in the generalized repressilator model. Chaos. 2011;21(2):023104. DOI: 10.1063/1.3574387.
  29. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001;55:165–199. DOI: 10.1146/annurev.micro.55.1.165.
  30. McMillen et al. Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci. USA. 2002;99(2):679–684. DOI: 10.1073/pnas.022642299.
  31. Danino T. et al. A synchronized quorum of genetic clocks. Nature. 2010;463(7279):326–330. DOI: 10.1038/nature08753.
  32. Mondragon-Palomino O. et al. Entrainment of a population of synthetic genetic oscillators. Science. 2011;333(6047):1315–1319. DOI: 10.1126/science.1205369.
  33. Prindle A. et al. Sensing array of radically coupled genetic biopixels. Nature. 2012;481(7379):39–44. DOI: 10.1038/nature10722.
  34. Balagadde FK. et al. A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 2008;4:187–194. DOI: 10.1038/msb.2008.24.
  35. Basu S. et al. A synthetic multicellular system for programmed pattern formation. Nature. 2005;434(7037):1130–1134. DOI: 10.1038/nature03461.
  36. Tabor JJ. et al. A synthetic genetic edge detection program. Cell. 2009;137(7):1272–1281. DOI: 10.1016/j.cell.2009.04.048.
  37. Tamsir A, Tabor JJ, Voigt CA. Robust multicellular computing using genetically encoded NOR gates and chemical ’wires’. Nature. 2011;469(7329):212–215. DOI: 10.1038/nature09565.
  38. Regot S. et al. Distributed biological computation with multicellular engineered networks. Nature. 2011;469(7329):207–211. DOI: 10.1038/nature09679.
  39. Balagadde FK. et al. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science. 2005;309(5731):137–140. DOI: 10.1126/science.1109173.
  40. Ullner E, Zaikin A. et al. Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cell communication. Phys. Rev. Lett. 2007;99(14):148103. DOI: 10.1103/PhysRevLett.99.148103.
  41. Koseska A. et al. Cooperative differentiation through clustering in multicellular populations. J. of Theor. Biol. 2010;263(2):189–202. DOI: 10.1016/j.jtbi.2009.11.007.
  42. Potapov I, Volkov E, Kuznetsov A. Dynamics of coupled repressilators: The role of mRNA kinetics and transcription cooperativity. Phys. Rev. E. 2011;83(3):031901. DOI:10.1103/PhysRevE.83.031901.
  43. Nene N, Zaikin A. Interplay between path and speed in decision making by high-dimensional stochastic gene regulatory networks. PLoS ONE. 2012;7(7):e40085. DOI:10.1371/journal.pone.0040085.
Short text (in English):
(downloads: 83)