For citation:
Kuznetsov A. P., Turukina L. V. On the interaction of a system with multifrequency oscillations with a chaotic generator. Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, vol. 33, iss. 6, pp. 785-803. DOI: 10.18500/0869-6632-003172, EDN: SUWUZF
On the interaction of a system with multifrequency oscillations with a chaotic generator
The purpose of the work: to study the influence of the dynamics of a chaotic system on a system with multi-frequency quasi-periodicity and the Landau-Hopf scenario. The Kislov-Dmitriev chaotic system and an ensemble of van der Pol oscillators with non-identical excitation parameters are chosen as the object of study.
Methods. The analysis was carried out using graphs of Lyapunov exponents and the criterion for identifying types of quasiperiodic bifurcations based on them.
Results. Scenarios of the changing of the regime’s types are presented as the coupling parameter between the subsystems decreased. They may have certain features. Thus, the transition from a three-frequency to a four-frequency regime occurs not through a quasiperiodic Hopf bifurcation, but through a chaos window. The latter is characterized by three or four zero Lyapunov exponents. Inside this chaotic window, a peculiar bifurcation is possible. It is corresponding to an increase in the number of zero Lyapunov exponents according to the type of a saddle-node Hopf bifurcation. Chaos with a different number of zero exponents is observed as the coupling parameter of van der Pol oscillators varied. In this case, a cascade of points corresponding to a step-by-step increase in the number of zero exponents occurs according to a different scenario. It is to a certain extent similar to a quasiperiodic Hopf bifurcation. When the control parameter When the control parameter of the Kislov-Dmitriev system increases, hyperchaos with three zero Lyapunov exponents may appear in the combined system. An inverted order of changing modes is also possible. In this case, for example, a three-frequency regime turns into a four-frequency regime through a chaotic window.
Conclusion. The obtained results expand conception about high-dimensional chaos with several zero Lyapunov exponents and its transformations with parameter changes.
- Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Science. Cambridge: Cambridge University Press; 2001. 411 р DOI: 10.1017/CBO9780511755743.
- Landa P S. Self-Oscillations in Systems with a Finite Number of Degrees of Freedom. M.: LIBROCOM; 2010. 360 p. (in Russian).
- Balanov AG, Janson NB, Postnov DE, Sosnovtseva O V. Synchronization: From Simple to Complex. Berlin: Springer; 2009. 425 р DOI: 10.1007/978-3-540-72128-4.
- Kuznetsov AP, Emelyanova YuP, Sataev IR, Turukina L V. Synchronization in Tasks. Saratov: Nauka; 2010. 256 p. (in Russian).
- Kuznetsov Yu A. Elements of Applied Bifurcation Theory. Cham: Springer; 2023. 703 р DOI: 10.1007/978-3-031-22007-4.
- Kuznetsov YuA, Meijer HG E. Numerical Bifurcation Analysis of Maps: From Theory to Software. Cambridge: Cambridge University Press; 2019. 420 р DOI: 10.1017/9781108585804.
- Chen X, Qian S, Yu F, Zhang Z, Shen H, Huangа Y, Cai S, Deng Z, Li Y, Du S. Pseudorandom number generator based on three kinds of four-wing memristive hyperchaotic system and its application in image encryption. Complexity. 2020;2020(7):8274685 DOI: 10.1155/2020/8274685.
- Přibylová L, Ševčík J, Eclerová V, Klimeš P, Brázdil M, Meijer H G. Weak coupling of neurons enables very high-frequency and ultra-fast oscillations through the interplay of synchronized phase shifts. Netw. Neurosci. 2024;8(1):293-318 DOI: 10.1162/netn_a_00351.
- Bucolo M, Buscarino A, Fortuna L, Gagliano S. Multidimensional discrete chaotic maps. Front. Phys. 2022;10:862376 DOI: 10.3389/fphy.2022.862376.
- Kopp M. New 7D and memristor-based 8D chaotic systems: Computer modeling and circuit implementation. Journal of Telecommunication, Electronic and Computer Engineering. 2024;16(1):13-23 DOI: 10.54554/jtec.2024.16.01.003.
- Kurbako AV, Ponomarenko VI, Prokhorov M D. Adaptive control of nonsynchronous oscillations in network of identical electronic neuron-like generators. Tech. Phys. Lett. 2022;48(10):38-41 DOI: 10.21883/TPL.2022.10.54796.19328.
- Korneev IA, Slepnev AV, Semenov VV, Vadivasova T E. Wave processes in a ring of memristively coupled self-excited oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2020;28(3):324-340 (in Russian) DOI: 10.18500/0869-6632-2020-28-3-324-340.
- Singhal B, Kiss IZ, Li J S. Optimal phase-selective entrainment of heterogeneous oscillator ensembles. SIAM J. Appl. Dyn. Syst. 2023;22(3):2180-2205 DOI: 10.1137/22M1521201.
- Mircheski P, Zhu J, Nakao H. Phase-amplitude reduction and optimal phase locking of collectively oscillating networks. Chaos. 2023;33(10):103111 DOI: 10.1063/5.0161119.
- Landau L D. On the problem of turbulence. Dokl. Akad. Nauk USSR. 1944;44(8):339-342(in Russian).
- Hopf E. A mathematical example displaying features of turbulence. Comm. Pure Appl. Math. 1948;1:303-322. 1.
- Ruelle D, Takens F. On the nature of turbulence. Commun. Math. Phys. 1971;20:167-192 DOI: 10.1007/BF01646553.
- Anishchenko V, Nikolaev S, Kurths J. Winding number locking on a two-dimensional torus: Synchronization of quasiperiodic motions. Phys. Rev. E. 2006;73(5):056202. 10.1103/PhysRevE.73.05620210.1103/PhysRevE.73.056202.
- Anishchenko VS, Nikolaev S M. Transition to chaos from quasiperiodic motions on a four-dimensional torus perturbed by external noise. Int. J. Bifurc. Chaos. 2008;18(9):2733-2741 DOI: 10.1142/S0218127408021956.
- Anishchenko VS, Nikolaev S M. Stability, synchronization and destruction of quasiperiodic motions. Rus. J. Nonlin. Dyn. 2006;2(3):267-278 (in Russian) DOI: 10.20537/nd0603001.
- Emelianova YP, Kuznetsov AP, Sataev IR, Turukina L V. Synchronization and multi-frequency oscillations in the low-dimensional chain of the self-oscillators. Physica D. 2013;244(1):36-49 DOI: 10.1016/j.physd.2012.10.012.
- Stankevich NV, Kuznetsov AP, Seleznev E P. Chaos and hyperchaos arising from the destruction of multifrequency tori. Chaos, Solitons & Fractals. 2021;147:110998. 10.1016/j.chaos.2021.11099810.1016/j.chaos.2021.110998.
- Kuznetsov AP, Sataev IR, Sedova Y V. Dynamics of three and four non-identical Josephson junctions. Journal of Applied Nonlinear Dynamics. 2018;7(1):105-110. 10.5890/JAND.2018.03.00910.5890/JAND.2018.03.009.
- Kuznetsov AP, Sedova YV, Stankevich N V. Different modes of three coupled generators capable of demonstrating quasiperiodic oscillations. Tech. Phys. Lett. 2022;48(12):56-59. 10.21883/TPL.2022.12.54949.1929610.21883/TPL.2022.12.54949.19296.
- Hidaka S, Inaba N, Sekikawa M, Endo T. Bifurcation analysis of four-frequency quasi-periodic oscillations in a three-coupled delayed logistic map. Phys. Lett. A. 2015;379(7):664-668 DOI: 10.1016/j.physleta.2014.12.022.
- Hidaka S, Inaba N, Kamiyama K, Sekikawa M, Endo T. Bifurcation structure of an invariant three-torus and its computational sensitivity generated in a three-coupled delayed logistic map. IEICE Nonlin. Th. Appl. 2015;6(3):433-442 DOI: 10.1587/nolta.6.433.
- Kuznetsov AP, Sedova YV, Stankevich N V. Discrete Rössler oscillators: Maps and their ensembles. Int. J. Bifurc. Chaos. 2023;33(15):2330037 DOI: 10.1142/S0218127423300379.
- Borkowski L, Stefanski A. Stability of the 3-torus solution in a ring of coupled Duffing oscillators. Eur. Phys. J. Spec. Top. 2020;229(12):2249-2259 DOI: 10.1140/epjst/e2020-900276-4.
- Evstigneev N M. Laminar-turbulent bifurcation scenario in 3D Rayleigh-Benard convection problem. Open Journal of Fluid Dynamics. 2016;6(4):496-539 DOI: 10.4236/ojfd.2016.64035.
- Nosov VV, Grigoriev VM, Kovadlo PG, Lukin VP, Nosov EV, Torgaev A V. Astroclimate of specialized stations of the Large solar vacuum telescope: Part II. In: Fourteenth International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics. SPIE; 2008. P. 181-192 DOI: 10.1117/12.783159.
- Herrero R, Farjas J, Pi F, Orriols G. Nonlinear complexification of periodic orbits in the generalized Landau scenario. Chaos. 2022;32(2):023116 DOI: 10.1063/5.0069878.
- Krysko AV, Awrejcewicz J, Papkova IV, Krysko V A. Routes to chaos in continuous mechanical systems: Part 2. Modelling transitions from regular to chaotic dynamics. Chaos, Solitons & Fractals. 2012;45(6):709-720 DOI: 10.1016/j.chaos.2012.02.001.
- Awrejcewicz J, Krysko V A. Scenarios of Transition from Harmonic to Chaotic Motion. In: Chaos in Structural Mechanics. Berlin: Springer; 2008. P. 225-233 DOI: 10.1007/978-3-540-77676-5_10.
- Kuznetsov AP, Kuznetsov SP, Sataev IR, Turukina L V. About Landau–Hopf scenario in a system of coupled self-oscillators. Phys. Lett. A. 2013;377(45-48):3291-3295. 10.1016/j.physleta.2013.10.01310.1016/j.physleta.2013.10.013.
- Kulikov A N. Landau-Hopf scenario of passage to turbulence in some problems of elastic stability theory. Diff. Equat. 2012;48:1258-1271 DOI: 10.1134/S0012266112090066.
- Kulikov AN, Kulikov D A. A possibility of realizing the Landau—Hopf scenario in the problem of tube oscillations under the action of a fluid flow. Theor. Math. Phys. 2020;203(1):501-511 DOI: 10.1134/S0040577920040066.
- Kulikov A N. Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence. J. Math. Sci. 2022;262(6):809-816 DOI: 10.1007/s10958-022-05859-z.
- Kuznetsov AP, Sedova YV, Stankevich N V. Coupled systems with quasi-periodic and chaotic dynamics. Chaos, Solitons & Fractals. 2023;169:113278 DOI: 10.1016/j.chaos.2023.113278.
- Kuznetsov AP, Sedova Y V. Dynamics of coupled quasiperiodic generator and Rossler system. Tech. Phys. Lett. 2023;49(1):58-61 DOI: 10.21883/TPL.2023.01.55351.19289.
- Kuznetsov AP, Turukina L V. About the chaos influence on a system with multi-frequency quasi-periodicity and the Landau-Hopf scenario. Physica D. 2024;470B:134425. 10.1016/j.physd.2024.13442510.1016/j.physd.2024.134425.
- Dmitriev AS, Kislov VY a. Stochastic Oscillations in Radiophysics and Electronics. M.: Nauka; 1989. 277 p. (in Russian).
- Dmitriev A S. Forty years of the Dmitriev-Kislov ring oscillator model. Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(4):423-427 (in Russian) DOI: 10.18500/0869-6632-003119.
- Kuznetsov S P. Dynamic Chaos. M.: Fizmatlit; 2001. 295 p. (in Russian).
- Dmitriev A, Efremova E, Maksimov N, Panas A. Chaos Generation. M.: Tekhnosfera; 2012. 424 p. (in Russian).
- Emelyanova YP, Kuznetsov A P. Synchronization of coupled van der pole and Kislov-Dmitriev self-oscillators. Tech. Phys. 2011;56(4):435-442 DOI: 10.1134/S106378421104013X.
- Vitolo R, Broer H, Simó C. Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems. Regul. Chaot. Dyn. 2011;16:154-184. 10.1134/S156035471101006010.1134/S1560354711010060.
- Broer H, Vitolo R, Simó C. Quasi-periodic Hénon-like attractors in the Lorenz-84 climate model with seasonal forcing. In: EQUADIFF 2003. 22-26 July 2003, Hasselt, Belgium. 2005. P. 601-607 DOI: 10.1142/9789812702067_0100.
- Broer H, Simó C, Vitolo R. Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing. Nonlinearity. 2002;15(4):1205-1267 DOI: 10.1088/0951-7715/15/4/312.
- Broer HW, Simó C, Vitolo R. Chaos and quasi-periodicity in diffeomorphisms of the solid torus. Discrete Contin. Dyn. Syst. Ser. B. 2010;14(3):871-905 DOI: 10.3934/dcdsb.2010.14.871.
- Popova ES, Stankevich NV, Kuznetsov A P. Cascade of invariant curve doubling bifurcations and quasi-periodic Hénon attractor in the discrete Lorenz-84 model. Izvestiya of Saratov University. Physics. 2020;20(3):222-232 (in Russian) DOI: 10.18500/1817-3020-2020-20-3-222-232.
- Stankevich NV, Shchegoleva NA, Sataev IR, Kuznetsov A P. Three-dimensional torus breakdown and chaos with two zero Lyapunov exponents in coupled radio-physical generators. J. Comput. Nonlinear Dynam. 2020;15(11):111001 DOI: 10.1115/1.4048025.
- Grines EA, Kazakov A, Sataev I R. On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators. Chaos. 2022;32(9):093105 DOI: 10.1063/5.0098163.
- Garashchuk I, Kazakov A, Sinelshchikov D. Scenarios for the appearance of strange attractors in a model of three interacting microbubble contrast agents. Chaos, Solitons & Fractals. 2024;182:114785 DOI: 10.1016/j.chaos.2024.114785.
- Karatetskaia E, Shykhmamedov A, Kazakov A. Shilnikov attractors in three-dimensional orientation-reversing maps. Chaos. 2021;31(1):011102 DOI: 10.1063/5.0036405.
- Shykhmamedov A, Karatetskaia E, Kazakov A, Stankevich N. Scenarios for the creation of hyperchaotic attractors in 3D maps. Nonlinearity. 2023;36(7):3501-3541 DOI: 10.1088/1361-6544/acd044.
- Muni S S. Ergodic and resonant torus doubling bifurcation in a three-dimensional quadratic map. Nonlinear Dyn. 2024;112(6):4651-4661 DOI: 10.1007/s11071-024-09284-6.
- Muni S S. Persistence of resonant torus doubling bifurcation under polynomial perturbations. Franklin Open. 2025;10:100207 DOI: 10.1016/j.fraope.2024.100207.
- 838 reads