ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Kuznetsov A. P., Seliverstova E. S., Trubetskov D. I., Turukina L. V. Phenomenon of the van der pol equation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 4, pp. 3-42. DOI: 10.18500/0869-6632-2014-22-4-3-42

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 796)
Article type: 
517.91, 517.938, 51.73

Phenomenon of the van der pol equation

Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Seliverstova Ekaterina Sergeevna, Saratov State University
Trubetskov Dmitriy Ivanovich, Saratov State University
Turukina L. V., Saratov State University

This review is devoted to the famous Dutch scientist Balthasar van der Pol, who made a significant contribution to the development of radio­engineering, physics and mathematics. The review outlines only one essential point of his work, associated with the equation that bears his  name, and has a surprisingly wide range of applications in natural sciences. In this review we discuss the following matters.
• The biography of van der Pol, history of his equation and supposed precursors.
• The contribution of A.A. Andronov in the theory of self­oscillations.
• Van der Pol equation and modeling of processes in the human body (the mode of the heart beat and of the «heart–vessels» system; modeling of processes in the large intestine; models of excitatory and inhibitory neural interactions; modeling synchronization in processing and transfer of information in neural networks; various problems related to human musculoskeletal apparatus; modeling the vocal cords).
• Development and modifications of the van der Pol equation.

  1. Ginoux JM, Letellier C. Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept. Chaos. 2012;22(2):023120. DOI: 10.1063/1.3670008.
  2. Cartwright ML. Balthazar Van der Pol. J. London Math. Soc. 1960;35:367—376.
  3. Van der Pol B. Nonlinear Theory of Electrical Oscillations. Moscow: State Communications Technology Publishing House; 1935. 42 p. (in Russian).
  4. Rabinovich MI, Trubetskov DI. Oscillations and Waves in Linear and Nonlinear Systems. Netherlands: Springer; 1986. 578 p. DOI: 10.1007/978-94-009-1033-1.
  5. Landa PS. Self-Oscillations in Systems with a Finite Number of Degrees of Freedom. Moscow: Nauka; 1980. 360 p. (in Russian).
  6. Goryachenko VD. Andronov Alexander Alexandrovich. Nizhni Novgorod: NNUP; 2001. 80 p. (in Russian).
  7. Trubetskov DI. Synchronization: Scientist and Time. Lectures at Schools «Nonlinear Days in Saratov for the Young». Vol. 2. Saratov: «College»; 2006. 112 p. (in Russian).
  8. Andronov AA, Witt AA, Khaikin SE. Theory of Oscillators. Oxford: Pergamon Press; 1966. 961 p.
  9. Feinberg EL. The forefather (about Leonid Isaakovich Mandelstam). Physics-Uspekhi. 2002;45(1):81—100. DOI: 1070/PU2002v045n01ABEH001126.
  10. Fabrikant VA. About L. I. Mandelstam. Academician Mandelstam. To the 100th Anniversary of Birth. Мoscow: Nauka; 1979. 234 p. (in Russian).
  11. Filippov AT. Multi-Facial Soliton. Moscow: Nauka; 1986. 230 p. (in Russian).
  12. Cveticanin L. On the Van der Pol oscillator: An overview. Applied Mechanics and Materials. 2013;430:3—13. DOI: 10.4028/
  13. Kuang YC, Biernacki PD, Lahrichi A, Mickelson A. Analysis of an experimental technique for determining Van der Pol parameters of a transistor oscillator. IEEE Transactions on Microwave Theory and Techniques. 1998;46(7):914—922. DOI: 10.1109/22.701443.
  14. Van der Pol B. On relaxation-oscillations. Philosophical Magazine & Journal of Science. 1926;2(11):978—992. DOI: 10.1080/14786442608564127.
  15. Van der Pol B, van der Mark J. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Philosophical Magazine & Journal of Science. 1928;6(38):763—775. DOI: 10.1080/14786441108564652.
  16. Privezencev AP, Sablin NI, Filippenko NM, Fomenko GP. Nonlinear vibrations of the virtual cathode in the triode system. Journal of Communications Technology and Electronics. 1992;37(7):1242 (in Russian).
  17. Magda II, Pashchenko AV, Romanov SS. To the theory of beam feedback in generators with a virtual cathode. Problems of atomic science and technology. Plasma Electronics and New Methods of Acceleration . 2003;(4):167—170 (in Russian).
  18. Sze H, Price D, Harteneck B. Phase locking of two strongly coupled vircators. J. Appl. Phys. 1990;67(5):2278—2282. DOI: 10.1063/1.345521.
  19. Repin BG, Dubinov AE. Phasing of three vircators simulated in terms of coupled van der Pol oscillators. Tech. Phys. 2006;51(4):489–494. DOI: 10.1134/S1063784206040153.
  20. Liao P, York RA. A new phase-shifterless beam-scanning technique using arrays of coupled oscillators. IEEE transactions on microwave theory and techniques. 1993;41(10):1810—1815. DOI: 10.1109/22.247927.
  21. Yabuno H, Kaneko H, Kuroda M, Kobayashi T. Van der Pol type self-excited micro-cantilever probe of atomic force microscopy. Nonlinear Dyn. 2008;54(1):137—149. DOI: 10.1007/s11071-008-9339-1.
  22. Menzel KO, Bockwoldt T, Arp O, Piel A. Modeling dust-density wave fields as a system of coupled van der Pol oscillators. IEEE Transactions on Plasma Science. 2013;41(4):735—739. DOI: 10.1109/TPS.2012.2227497.
  23. Miwadinou CH, Hinviy LA, Monwanou AV, Chabi Orou JB. Nonlinear dynamics of plasma oscillations modeled by a forced modified Van der Pol–Duffing oscillator. arXiv: 1308.6132. arXiv Preprint; 2013.
  24. Klinger T, Greiner F, Rohde A, Piel A. Van der Pol behavior of relaxation oscillations in a periodically driven thermionic discharge. Phys. Rev. E. 1995;52(4):4316—4327. DOI: 10.1103/PhysRevE.52.4316.
  25. Klinger T, Piel A, Seddighi F, Wilke C. Van der Pol Dynamics of ionization waves. Phys. Lett. A. 1993;182(23):312—318.
  26. Gembarzhevskii GV. Electric-discharge effect in a plasma wake flow: Pulsation energy redistribution toward lower frequencies. Tech. Phys. Lett. 2009;35(3):241–244. DOI: 10.1134/S1063785009030146
  27. Lashinsky H, Rosenberagn J, Detrick L. Power line radiation: Possible evidence of van der Pol oscillations in the magnetosphere. Geophysical Research Letters. 1980;7(10):837—840. DOI: 10.1029/GL007i010p00837.
  28. Sun ZZ, Sun Y, Wang XR, Cao JP, Wang YP, Wang YQ. Self-sustained current oscillations in superlattices and the van der Pol equation. Applied Physics Letters. 2005;87(18):182110. DOI: 10.1063/1.2126149.
  29. Tony EL, Sadeghpour HR. Quantum synchronization of quantum van der Pol oscillators with trapped ions. Phys. Rev. Lett. 2013;111(23):234101. DOI: 10.1103/PhysRevLett.111.234101.
  30. Lamb W. Theory of Optical Nasers. In: Quantum Optics and Quantum Radiophysics. Moscow: Mir; 1966. P. 281 (in Russian).
  31. Pampalon E, Lapucci A. Locking-range analysis for three coupled lasers. Optics letters. 1993;18(22):1881—1883. DOI: 10.1364/OL.18.001881.
  32. Khibnik AI, Braiman Y, Kennedy TAB, Wiesenfeld K. Phase model analysis of two lasers with injected field. Physica D. 1998;111(1—4):295—310. DOI: 10.1016/S0167-2789(97)80017-6.
  33. Braiman Y, Kennedy TAB, Wiesenfeld K, Khibnik AI. Entrainment of solid-state laser arrays. Phys. Rev. A. 1995;52(2):1500—1506. DOI: 10.1103/physreva.52.1500 .
  34. Khibnik AI, Braiman Y, Protopopescu V, Kennedy TAB, Wiesenfeld K. Amplitude dropout in coupled lasers. Phys. Rev. A. 2000;62(6):063815. DOI: 10.1103/PhysRevA.62.063815.
  35. Glova AF. Phase locking of optically coupled lasers. Quantum Electronics. 2003;33(4):28—306. DOI: 10.1070/QE2003v033n04ABEH002415
  36. Kaganov VI. Using wind power to prevent tropical cyclone development. Tech. Phys. Lett. 2006; 32(3):252–254. DOI: 10.1134/S1063785006030230.
  37. Skop RA, Griffin OM. A model for the vortex-excited resonant response of bluff cylinders. Journal of Sound and Vibration. 1973;27(2):225—233. DOI: 10.1016/0022-460X(73)90063-1.
  38. Facchinettia ML, Langre E, Biolley F. Vortex shedding modeling using diffusive van der Pol oscillators. Comptes Rendus Mecanique. 2002;330(7):451—456. DOI: 10.1016/S1631-0721(02)01492-4.
  39. Veskos P, Demiris Y. Developmental acquisition of entrainment skills in robot swinging using van der Pol oscillators. In: Proceedings of the Fifth International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems Lund University Cognitive Studies. Lund University Cognitive Studies; 2005. P. 87—93.
  40. Paschenko RE, Paschenko EI, Maksyuta DV. Forming KFM fractal signals on the basis van der Pol equations. Systems of Control, Bavigation and Communication. 2009;11(3):225 (in Russian).
  41. Zaitsev VV, Zaitsev OV. Method of information protection using the algorithm for generating chaotic self-oscillations. Vestnik of Samara University. Natural Science Series. 2006;49(9):66—71 (in Russian).
  42. Lucero J, Schoentgen J. Modeling vocal fold asymmetries with coupled van der Pol oscillators. Proceedings of Meetings on Acoustics. 2013;19:060165. DOI: 10.1121/1.4798467.
  43. Long GR, Tubis A, Jones KL. Modeling synchronization and suppression of spontaneous otoacoustic emissions using Van der Pol oscillators: Effects of aspirin administration. J. Acoust. Soc. Am. 1991;89(3):1201—1212. DOI: 10.1121/1.400651.
  44. Dutra MS, de Pina Filho AC, Romano VF. Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol. Biol. Cybern. 2003;88(4):286—292. DOI: 10.1007/s00422-002-0380-8.
  45. Buldakov NS, Samochetova NS, Sitnikov AV, Suyatinov SI. Modeling of connections in the «heart-vessel» system. Scientific Edition of Bauman MSTU. Science and Education. 2013;(1):123—134 (in Russain).
  46. Beek PJ, Schmidt RC, Morris AW, Sim MY, Turvey MT. Linear and nonlinear stiffness and friction in biological rhythmic movements. Biol. Cybern. 1995;73(6):499—507. DOI: 10.1007/bf00199542.
  47. Kawahara T. Coupled van der Pol oscillators – A model of excitatory and inhibitory interactions. Biol. Cybern. 1980;39(1):37—43. DOI: 10.1007/bf00336943.
  48. Linkens DA, Taylor I, Duthie HL. Mathematical modeling of the colorectal myo-electrical activity in humans. IEEE Transactions on Biomedical Engineering. 1976;BME-23(2):101—110. DOI: 10.1109/TBME.1976.324569.
  49. Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 1972;12(1):1—24. DOI: 10.1016/S0006-3495(72)86068-5.
  50. Osipov GV. Synchronization Processing and Transmitting Information in Neural Networks. Teaching materials. Nizhny Novgorod; 2007. 99 p. (in Russian).
  51. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear Oscillations. Moscow: Fizmatlit; 2002. 292 p. (in Russian).
  52. Seliverstova ES. On the question of two self-exciting oscillation models in non-physical systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 2013;21(3):112—118 (in Russian). DOI: 10.18500/0869-6632-2013-21-3-112-118.
  53. Khokhlov RV. To the theory of capture with a small amplitude of external force. Sov. Phys. Dokl. 1954;97(3):411—414 (in Russian).
  54. Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge University Press; 2001. 432 p.
  55. Balanov AG, Janson NB, Postnov DE, Sosnovtseva O. Synchronization: From Simple to Complex. Berlin: Springer; 2009. 426 p. DOI: 10.1007/978-3-540-72128-4.
  56. Rand R, Holmes PJ. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. Int. J. Non-Linear Mechanics. 1980;15(4—5):387—399. DOI: 10.1016/0020-7462(80)90024-4.
  57. Ivanchenko M, Osipov G, Shalfeev V, Kurths J. Synchronization of two non-scalar-coupled limit-cycle oscillators. Physica D. 2004;189(1–2):8—30. DOI: 10.1016/j.physd.2003.09.035.
  58. Adler RA. A study of locking phenomena in oscillators. Proc. IRE. 1946;34(34):351—357. DOI: 10.1109/JRPROC.1946.229930.
  59. Kuznetsov AP, Stankevich NV, Turukina LV. Coupled van der pol and van der Pol–Duffing oscillators: dynamics of phase and computer simulation. Izvestiya VUZ. Applied Nonlinear Dynamics. 2008;16(4):101—136 (in Russian). DOI: 10.18500/0869-6632-2008-16-4-101-136.
  60. Kuznetsov AP, Stankevich NV, Turukina LV. Coupled van der Pol–Duffing oscillators: Phase dynamics and structure of synchronization tongues. Physica D. 2009;238(14):1203—1215. DOI: 10.1016/j.physd.2009.04.001.
  61. Kuznetsov AP, Paksjutov VI, Roman JP. Properties of synchronization in the system of nonidentical coupled van der pol and van der Pol – Duffing oscillators. Broadband synchronization. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(4):3-15 (in Russian). DOI: 10.18500/0869-6632-2007-15-4-3-15.
  62. Kuznetsov AP, Roman JP. Properties of synchronization in the systems of non-identical coupled van der Pol and van der Pol–Duffing oscillators. Broadband synchronization. Physica D. 2009;238(16):1499—1506. DOI: 10.1016/j.physd.2009.04.016.
  63. Kuznetsov AP, Roman JP, Seleznev EP. Synchronization in coupled self­sustained oscillators with non­-identical parameters. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(2):62—78 (in Russian). DOI: 10.18500/0869-6632-2010-18-2-62-78.
  64. Astakhov V, Koblyanskii S, Shabunin A, Kapitaniak T. Peculiarities of the transitions to synchronization in coupled systems with amplitude death. Chaos. 2011;21(2):023127. DOI: 10.1063/1.3597643.
  65. Baesens С, Guckenheimer J, Kim S, MacKay RS. Three coupled oscillators: mode locking, global bifurcations and toroidal chaos. Physica D. 1991;49(3):387—475. DOI: 10.1016/0167-2789(91)90155-3.
  66. Emelianova YP, Kuznetsov AP, Sataev IR, Turukina LV. Synchronization and multi-frequency oscillations in the low-dimensional chain of the self-oscillators. Physica D. 2013;244(1):36—49. DOI: 10.1016/j.physd.2012.10.012.
  67. Roman JP, Kuznetsov AP, Turukina LV. Dynamics of three coupled van der Pol oscillators with non-identical controlling parameters. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(5):76—90 (in Russian). DOI: 10.18500/0869-6632-2011-19-5-76-90.
  68. Kuznetsov AP, Kuznetsov SP, Sataev IR, Turukina LV. About Landau–Hopf scenario in a system of coupled self-oscillators. Phys. Lett. A. 2013;377(45—48):3291—3295. DOI: 10.1016/j.physleta.2013.10.013.
  69. Emelianova YP, Kuznetsov AP, Turukina LV, Sataev IR, Chernyshov NY. A structure of the oscillation frequencies parameter space for the system of dissipatively coupled oscillators. Communications in Nonlinear Science and Numerical Simulation. 2014;19(4):1203—1212. DOI: 10.1016/j.cnsns.2013.08.004.
  70. Mendelowitz L, Verdugo A, Rand R. Dynamics of three coupled limit cycle oscillators with application to artificial intelligence. Communications in Nonlinear Science and Numerical Simulation. 2009;14(1):270—283. DOI: 10.1016/j.cnsns.2007.08.009.
  71. Rand R, Wong J. Dynamics of four coupled phase-only oscillators. Communications in Nonlinear Science and Numerical Simulation. 2008;13(3):501—507. DOI: 10.1016/j.cnsns.2006.06.013.
  72. Hong H, Strogatz SH. Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators. Phys. Rev. Lett. 2011;106(5):054102. DOI: 10.1103/PhysRevLett.106.054102.
  73. Hong H, Strogatz SH. Mean-field behavior in coupled oscillators with attractive and repulsive interactions. Phys. Rev. E. 2012;85(5):056210. DOI: 10.1103/PhysRevE.85.056210.
  74. Borgers C, Kopell N. Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Computation. 2003;15(3):509—538. DOI: 10.1162/089976603321192059.
  75. Rompala K, Rand R, Howland H. Dynamics of three coupled van der Pol oscillators with application to circadian rhythms. Communications in Nonlinear Science and Numerical Simulation. 2007;12(5):794—803. DOI: 10.1016/j.cnsns.2005.08.002.
  76. Kuznetsov AP, Turukina LV, Chernyschov NY. Dynamics and synchronization of the three coupled oscillators with reactive type of coupling. Russian Journal of Nonlinear Dynamics. 2013;9(1):11—25 (in Russian). DOI: 10.20537/nd1301002.
  77. Pikovsky A, Rosenau P. Phase compactons. Physica D. 2006;218(1):56—69. DOI: 10.1016/j.physd.2006.04.015.
  78. Topaj D, Pikovsky A. Reversibility vs. synchronization in oscillator lattices. Physica D. 2002;170(2):118—130. DOI: 10.1016/S0167-2789(02)00536-5.
  79. Bridge J, Rand R, Sah SM. Dynamics of a ring network of phase-only oscillators. Communications in Nonlinear Science and Numerical Simulation. 2009;14(11):3901—3913. DOI: 10.1016/j.cnsns.2008.08.011.
Short text (in English):
(downloads: 109)