ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kashchenko S. A., Tolbey A. O. Quasinormal forms for systems of two equations with large delay. Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, vol. 32, iss. 6, pp. 782-795. DOI: 10.18500/0869-6632-003135, EDN: NITFSM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
517.9
EDN: 

Quasinormal forms for systems of two equations with large delay

Autors: 
Kashchenko Sergej Aleksandrovich, P. G. Demidov Yaroslavl State University
Tolbey A. O., P. G. Demidov Yaroslavl State University
Abstract: 

A system of two equations with delay is considered. The purpose of this work is to study the local dynamics of this system under the assumption that the delay parameter is sufficiently large. Critical cases in the problem of stability of an equilibrium state are identified and it is shown that they have infinite dimension.

Methods. The research is based on the use of special methods of infinite-dimensional normalization. Classical methods based on the application of the theory of invariant integral manifolds and normal forms turn out to be directly inapplicable.

Results. As the main results, special nonlinear boundary value problems are constructed, which play the role of normal forms. Their nonlocal dynamics determine the behavior of all solutions of the original system in the vicinity of the equilibrium state.
 

Acknowledgments: 
The study was supported by a grant from the Russian Science Foundation № 21-71-30011, https://rscf.ru/project/21-71-30011/.
Reference: 
  1. Sharkovsky AN, Maistrenko YL, Romanenko EY. Difference Equations and their Applications. Dordrecht: Kluwer Academic Publishers Group; 1993. 358 p.
  2. Kashchenko SA. The dynamics of second-order equations with delayed feedback and a large coefficient of delayed control. Regular and Chaotic Dynamics. 2016;21(7/8):811–820. DOI: 10.1134/S1560354716070042.
  3. Giacomelli G, Politi A. Relationship between delayed and spatially extended dynamical systems. Physical review letters. 1996;76(15):2686. DOI: 10.1103/PhysRevLett.76.2686
  4. Wolfrum M, Yanchuk S. Eckhaus instability in systems with large delay. Physical review letters. 2006;96(22):220201. DOI: 10.1103/PhysRevLett.96.220201.
  5. Bestehorn M, Grigorieva EV, Haken H, Kashchenko SA. Order parameters for class-B lasers with a long time delayed feedback. Physica D: Nonlinear Phenomena. 2000;145(1–2):110–129. DOI: 10.1016/S0167-2789(00)00106-8.
  6. Giacomelli G, Politi A. Multiple scale analysis of delayed dynamical systems. Physica D: Nonlinear Phenomena. 1998;117(1–4):26–42. DOI: 10.1016/S0167-2789(97)00318-7.
  7. Ikeda K, Daido H, Akimoto O. Optical turbulence: chaotic behavior of transmitted light from a ring cavity. Physical Review Letters. 1980;45(9):709. DOI: 10.1103/PhysRevLett.45.709.
  8. Hale J.K. Theory of Functional Differential Equations. 2nd ed. New York: Springer; 1977. 626 p. DOI: 10.1007/978-1-4612-9892-2.
  9. D’Huys O, Vicente R, Erneux T, Danckaert J, Fischer I. Synchronization properties of network motifs: Influence of coupling delay and symmetry. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2008;18(3):37116. DOI: 10.1063/1.2953582.
  10. Van der Sande G, Soriano MC, Fischer I, Mirasso C. Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators. Physical Review E. 2008;77(5): 55202. DOI: 10.1103/PhysRevE.77.055202.
  11. Klinshov VV, Nekorkin VI. Synchronization of time-delay coupled pulse oscillators. Chaos, Solitons and Fractals. 2011;44(1–3):98–107. DOI: 10.1016/j.chaos.2010.12.007.
  12. Klinshov VV, Nekorkin VI. Synchronization of delay-coupled oscillator networks. PhysicsUspekhi. 2013;56(12):1217–1229. DOI: 10.3367/UFNr.0183.201312c.1323.
  13. Klinshov V, Shchapin D, Yanchuk S, Nekorkin V. Jittering waves in rings of pulse oscillators. Physical Review E. 2016;94(1):012206. DOI: 10.1103/PhysRevE.96.042217.
  14. Klinshov V, Shchapin D, Yanchuk S, Wolfrum M, D’Huys O, Nekorkin V. Embedding the dynamics of a single delay system into a feed-forward ring. Physical Review E. 2017;96:042217. DOI: 10.1103/PhysRevE.96.042217.
  15. Yanchuk S, Perlikowski P. Delay and periodicity. Physical Review E. APS. 2009;79(4):1–9. DOI: 10.1103/PhysRevE.79.046221.
  16. Kashchenko SA. Application of the normalization method to the study of the dynamics of a differential-difference equation with a small factor multiplying the derivative. Differentsialnye Uravneniya. 1989;25(8):1448–1451 (in Russian).
  17. Kashchenko SA. Van der Pol Equation with a Large Feedback Delay. Mathematics. 2023;11(6):1301. DOI: 10.3390/math11061301.
  18. Kaschenko SA. Normalization in the systems with small diffusion. Int. J. Bifurc. Chaos Appl. Sci. Eng. 1996;6:1093–1109. DOI: 10.1142/S021812749600059X.
  19. Kashchenko SA. The Ginzburg–Landau equation as a normal form for a second-order differencedifferential equation with a large delay. Computational Mathematics and Mathematical Physics. 1998;38(3):443–451.
  20. Vasil’eva AB, Butuzov VF. Asymptotic Expansions of the Solutions of Singularly Perturbed Equations. Moscow: Nauka; 1973. 272 p.
  21. Butuzov VF, Nefedov NN, Omel’chenko O, Recke L. Boundary layer solutions to singularly perturbed quasilinear systems. Discrete and Continuous Dynamical Systems - Series B. 2022;27(8): 255–4283. DOI: 10.3934/dcdsb.2021226.
  22. Nefedov NN. Development of methods of asymptotic analysis of transition layers in reaction– diffusion–advection equations: theory and applications. Computational Mathematics and Mathematical Physics. 2021;61(12):2068–2087. DOI: 10.1134/S0965542521120095.
  23. Nefedov NN, Nikulin EI. Existence and asymptotic stability of periodic solutions of the reactiondiffusion equations in the case of a rapid reaction. Russian Journal of Mathematical Physics. 2018;25(1):88–101. DOI: 10.1134/S1061920818010089.
  24. Bruno AD. Local Methods in Nonlinear Differential Equations. Springer Series in Soviet Mathematics. Berlin: Springer-Verlag; 1989. 358 p.
  25. Hartman P. Ordinary Differential Equations. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics (SIAM); 2002. 642 p. DOI: 10.1137/1.9780898719222.
Received: 
15.06.2024
Accepted: 
01.08.2024
Available online: 
31.10.2024
Published: 
29.11.2024