Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Для цитирования:

Кащенко С. А., Толбей А. О. Квазинормальные формы для систем двух уравнений с большим запаздыванием // Известия вузов. ПНД. 2024. Т. 32, вып. 6. С. 782-795. DOI: 10.18500/0869-6632-003135, EDN: NITFSM

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
517.9
EDN: 

Квазинормальные формы для систем двух уравнений с большим запаздыванием

Авторы: 
Кащенко Сергей Александрович, Ярославский государственный университет имени П.Г. Демидова (ЯрГУ)
Толбей Анна Олеговна, Ярославский государственный университет имени П.Г. Демидова (ЯрГУ)
Аннотация: 

Рассматривается система двух уравнений с запаздыванием. Основной целью исследования является изучение локальной динамики этой системы в предположении, что параметр запаздывания является достаточно большим. Выделены критические случаи в задаче об устойчивости состояния равновесия и показано, что они имеют бесконечную размерность.

Методы. Исследования основаны на применении специальных методов бесконечномерной нормализации. Классические методы, основанные на применении теории инвариантных интегральных многообразий и нормальных форм, оказываются непосредственно неприменимы.

Результаты. В качестве основных результатов построены специальные нелинейные краевые задачи, которые играют роль нормальных форм. Их нелокальная динамика определяет поведение всех решений исходной системы в окрестности состояния равновесия.
 

Благодарности: 
Исследование выполнено за счет гранта Российского научного фонда № 21-71-30011, https://rscf.ru/project/21-71-30011/.
Список источников: 
  1. Шарковский А. Н., Майстренко Ю. Л., Романенко Е. Ю. Разностные уравнения и их приложения. Киев: Наукова думка, 1986. 280 с.
  2. Kashchenko S. A. The dynamics of second-order equations with delayed feedback and a large coefficient of delayed control // Regular and Chaotic Dynamics. 2016. Vol. 21, no. 7/8. P. 811–820. DOI: 10.1134/S1560354716070042.
  3. Giacomelli G., Politi A. Relationship between delayed and spatially extended dynamical systems // Physical review letters. 1996. Vol. 76, no. 15. P. 2686. DOI: 10.1103/PhysRevLett.76.2686.
  4. Wolfrum M., Yanchuk S. Eckhaus instability in systems with large delay // Physical review letters. 2006. Vol. 96, no. 22. P. 220201. DOI: 10.1103/PhysRevLett.96.220201.
  5. Bestehorn M., Grigorieva E. V., Haken H., Kashchenko S. A. Order parameters for class-B lasers with a long time delayed feedback // Physica D: Nonlinear Phenomena. 2000. Vol. 145, no. 1–2. P. 110–129. DOI: 10.1016/S0167-2789(00)00106-8.
  6. Giacomelli G., Politi A. Multiple scale analysis of delayed dynamical systems // Physica D: Nonlinear Phenomena. 1998. Vol. 117, no. 1–4. P. 26–42. DOI: 10.1016/S0167-2789(97)00318-7.
  7. Ikeda K., Daido H., Akimoto O. Optical turbulence: chaotic behavior of transmitted light from a ring cavity // Physical Review Letters. 1980. Vol. 45, no. 9. P. 709. DOI: 10.1103/PhysRevLett.45.709.
  8. Hale J. K. Theory of Functional Differential Equations. 2nd ed. New York: Springer, 1977. 626 p. DOI: 10.1007/978-1-4612-9892-2.
  9. D’Huys O., Vicente R., Erneux T., Danckaert J., Fischer I. Synchronization properties of network motifs: Influence of coupling delay and symmetry // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2008/12/03. AIP, 2008. Vol. 18, no. 3. P. 037116. DOI: 10.1063/1.2953582.
  10. Van der Sande G., Soriano M. C., Fischer I., Mirasso C. Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators // Physical Review E. 2008. Vol. 77, no. 5. P. 55202. DOI: 10.1103/PhysRevE.77.055202.
  11. Klinshov V. V., Nekorkin V. I. Synchronization of time-delay coupled pulse oscillators // Chaos, Solitons and Fractals. 2011. Vol. 44, no. 1–3. P. 98–107. DOI: 10.1016/j.chaos.2010.12.007.
  12. Клиньшов В. В., Некоркин В. И. Синхронизация автоколебательных сетей с запаздывающими связями // Успехи Физических Наук. 2013. Т. 183, № 12. С. 1323–1336. DOI: 10.3367/UFNr.0183.201312c.1323.
  13. Klinshov V., Shchapin D., Yanchuk S., Nekorkin V. Jittering waves in rings of pulse oscillators // Physical Review E. 2016. Vol. 94, no. 1. P. 012206. DOI: 10.1103/PhysRevE.94.012206.
  14. Klinshov V., Shchapin D., Yanchuk S., Wolfrum M., D’Huys O., Nekorkin V. Embedding the dynamics of a single delay system into a feed-forward ring // Physical Review E. 2017. Vol. 96, no. 4. P. 042217. DOI: 10.1103/PhysRevE.96.042217.
  15. Yanchuk S., Perlikowski P. Delay and periodicity // Physical Review E. APS. 2009. Vol. 79, no. 4. P. 1–9. DOI: 10.1103/PhysRevE.79.046221.
  16. Кащенко С. А. Применение метода нормализации к изучению динамики дифференциально-разностных уравнений с малым множителем при производной // Дифференциальные уравнения. 1989. Т. 25, № 8. С. 1448–1451.
  17. Kashchenko S. A. Van der Pol equation with a large feedback delay // Mathematics. 2023. Vol. 11, no. 6. P. 1301. DOI: 10.3390/math11061301.
  18. Kaschenko S.A. Normalization in the systems with small diffusion // Int. J. Bifurc. Chaos Appl. Sci. Eng. 1996. Vol. 6, no. 6. P. 1093–1109. DOI: 10.1142/S021812749600059X.
  19. Kashchenko S. A. The Ginzburg–Landau equation as a normal form for a second-order differencedifferential equation with a large delay // Computational Mathematics and Mathematical Physics. 1998. Vol. 38, no. 3. P. 443–451.
  20. Vasil’eva A. B., Butuzov V. F. Asymptotic expansions of the solutions of singularly perturbed equations. Moscow: Nauka, 1973. 272 p.
  21. Butuzov V. F., Nefedov N. N., Omel’chenko O., and Recke L. Boundary layer solutions to singularly perturbed quasilinear systems // Discrete and Continuous Dynamical Systems – Series B. 2022. Vol. 27, no. 8. P.4255–4283. DOI: 10.3934/dcdsb.2021226.
  22. Nefedov N. N. Development of methods of asymptotic analysis of transitionlayers in reaction–diffusion–advection equations: theory and applications // Computational Mathematics and Mathematical Physics. 2021. Vol. 61, no. 12. P. 2068–2087. DOI: 10.1134/S0965542521120095.
  23. Nefedov N. N., Nikulin E. I. Existence and asymptotic stability of periodic solutions of the reactiondiffusion equations in the case of a rapid reaction // Russian Journal of Mathematical Physics. 2018. Vol. 25, no. 1. P. 88–101. DOI: 10.1134/S1061920818010089.
  24. Bruno A. D. Local Methods in Nonlinear Differential Equations / Translated from the Russian by W. Hovingh, C. S. Coleman, Springer Series in Soviet Mathematics. Berlin: Springer-Verlag, 1989. 348 p.
  25. Hartman P. Ordinary Differential Equations. 2nd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2002. 642 p. DOI: 10.1137/1.9780898719222.
Поступила в редакцию: 
15.06.2024
Принята к публикации: 
01.08.2024
Опубликована онлайн: 
31.10.2024
Опубликована: 
29.11.2024