ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Shabunin A. V. Random distant couplings influence to a system with phase multistability. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 2, pp. 20-33. DOI: 10.18500/0869-6632-2013-21-2-20-33

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 89)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Random distant couplings influence to a system with phase multistability

Autors: 
Shabunin Aleksej Vladimirovich, Saratov State University
Abstract: 

We explore the destruction of phase multistability which takes place in an ensemble of period doubling oscillators under the action of long-distance couplings, which appear randomly between the arbitrary cells. The investigation is carried out on the example of a chain of Rossler’s oscillators with periodic boundary conditions, where alongside with local couplings between the elements exist long-range interconnections. The sequence of bifurcations, which accompany increasing of the strength of the global coupling is determined.

Reference: 
  1. Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature. 1998;393(6684):440–442. DOI: 10.1038/30918.
  2. Lago-Fernández LF, Huerta R, Corbacho F, Sigüenza JA. Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett. 2000;84(12):2758–2761. DOI: 10.1103/PhysRevLett.84.2758.
  3. Barahona M, Pecora LM. Synchronization in small-world systems. Phys Rev Lett. 2002;89(5):054101. DOI: 10.1103/PhysRevLett.89.054101.
  4. Mori F, Odagaki T. Synchronization of coupled oscillators on small-world networks. Physica D. 2009;238(14):1180–1185. DOI: 10.1016/J.PHYSD.2009.04.002.
  5. Wang X, Chen G. Synchronization in small-world dynamical networks. Int. J. Bifurcation and Chaos. 2002;12(1):187–192.
  6. Astakhov VV, Bezruchko BP, Pudovochkin OB, Seleznev EP. Phase multi-stability and establishment of oscillations in nonlinear systems with period doubling. Soviet Journal Of Communications Technology And Electronics. 1993;38(2):291–295.
  7. Landa PS. Self-oscillations in systems with a finite number of degrees of freedom. Moscow: Nauka; 1980. 360 p. (In Russian).
  8. Dvornikov AA, Utkin GM, Chukov AM. On the mutual synchronization of the chain of resistively connected auto-generators Radiophysics and Quantum Electronics. 1984;27(11):1388–1394.
  9. Ermentrout GB. The behavior of rings of coupled oscillators. J Math Biol. 1985;23(1):55–74. DOI: 10.1007/BF00276558.
  10. Ermentrout GB. Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators. SIAM J. of Appl. Math. 1992;52(6):1664–1687. DOI: 10.1137/0152096.
  11. Shabunin AV, Akopov AA, Astakhov VV, Vadivasova TE. Izvestija VUZ, Applied Nonlinear Dynamics. 2005;13(4):37–54 (in Russian).
  12. Astakhov VV, Bezruchko BP, Erastova EN, Seleznev EP. Oscillation modes and their evolution in dissipatively coupled Feigenbaum systems. Tech. Phys. 1990;60(10):19–26 (in Russian).
  13. Astakhov VV, Bezruchko BP, Gulyaev YuV, Seleznev YP. Multistable States Of Dissipatively-Connected Feigenbaum System. Pisma v Zhurnal Tekhnicheskoi Fiziki. 1989;15(3):60–65.
  14. Astakhov VV, Bezruchko BP, Ponomarenko VI, Seleznev EP. Multi-stability in the system of radio-technical generators with capacitive communication. Soviet Journal of Communications Technology and Electronics. 1991;36(11):2167–2170.
  15. Astakhov VV, Bezruchko BP, Ponomarenko VI. Formation of multi-stability, classification of isomers and their evolution in related Feigenbaum systems. Radiophysics and Quantum Electronics. 1991;34(1):35–39.
  16. Anishchenko VS, Astakhov VV, Vadivasova TE, Sosnovtseva OV, Wu CW, Chua L. Dynamics of two coupled Chua’s curcuits. Int. J. of Bifurcation and Chaos. 1995;5(6):1677–1699.
  17. Bezruchko BP, Prokhorov MD, Seleznev EP. Oscillation types, multistability, and basins of attractors in symetrically coupled period-doubling systems. Chaos, Solitons and Fractals. 2003;15(4):695–711. DOI: 10.1016/S0960-0779(02)00171-6.
  18. Matias MA, Perez-Munuzuri V, Marino IP, Lorenzo MN, Perez-Villa V. Size instabilities in ring of chaotic synchronized systems. Europhys. Lett. 1997;37(6):379–384. DOI: 10.1209/epl/i1997-00159-8.
  19. Matias MA, Guemez J, Perez-Munuzuri V, Marino IP, Lorenzo MN, Perez-Villar V. Observation of a fast rotating wave in rings of coupled chaotic oscillators. Phys. Rev. Lett. 1997;78(2):219–222. DOI: 10.1103/PHYSREVLETT.78.219.
  20. Marino IP, Perez-Munuzuri V, Perez-Villar V, Sanchez E, Matias MA. Interaction of chaotic rotating waves in coupled rings of chaotic cells. Physica D. 2000;128(2-4):224–235. DOI: 10.1016/S0167-2789(98)00303-0.
  21. Shabunin A, Astakhov V, Anishchenko V. Developing chaos on base of traveling waves in a chain of coupled oscillators with period-doubling. Synchronization and hierarchy of multistability formation. Int. J. of Bifurcation and Chaos. 2002;12(8):1895–1907. DOI: 10.1142/S021812740200556X.
  22. Shabunin AV, Astahov VV. Phase multistability in an array of period-doubling self­sustained oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(6):99–118. DOI: 10.18500/0869-6632-2009-17-6-99-118.
  23. Pikovsky AS, Rosenblum MG, Kurths J. Synchronization: a universal concept in nonlinear sciences. Cambridge: University Press; 2001. 433 p.
  24. Gurtovnik AS, Neymark YuI. Synchronisms in the system of cyclically weakly coupled oscillators. Dynamic systems: Inter-university collection of scientific works. Nizhny Novgorod: UNN Press; 1991. P. 84.
Received: 
12.11.2012
Accepted: 
31.01.2013
Published: 
31.07.2013
Short text (in English):
(downloads: 47)