ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Prokhorov M. D., Ponomarenko V. I. Reconstruction of ensembles of coupled time-delay systems from time series. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 5, pp. 3-16. DOI: 10.18500/0869-6632-2010-18-5-3-16

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 71)
Language: 
Russian
Article type: 
Article
UDC: 
537.86

Reconstruction of ensembles of coupled time-delay systems from time series

Autors: 
Prokhorov Mihail Dmitrievich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Ponomarenko Vladimir Ivanovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

The methods for the reconstruction of model delay-differential equations for ensembles of coupled time-delay systems from their time series are proposed. The methods efficiency is illustrated using chaotic and periodic time series from chains of diffusively coupled model and experimental time-delay systems for the cases of unidirectional andmutual coupling.

Reference: 
  1. Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press; 1993.
  2. Glass L, Mackey MC. From Clocks to Chaos: The Rhythms of Life. Princeton: Princeton University Press; 1988.
  3. Mokhov II, Smirnov DA. El Nino Southern Oscillation drives North Atlantic Oscillation as revealed with nonlinear techniques from climatic indices. Geophys. Res. Lett. 2006;33(3):L03708. DOI: 10.1029/2005GL024557.
  4. Ikeda K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 1979;30(2):257–261. DOI: 10.1016/0030-4018(79)90090-7.
  5. Lang R, Kobayashi K. External optical feedback effects on semiconductor injection lasers properties. IEEE J. Quantum Electron. 1980;16(3):347–355. DOI: 10.1109/JQE.1980.1070479.
  6. Peil M, Jacquot M, Chembo YK, Larger L, Erneux T. Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators. Phys. Rev. E. 2009;79:026208. DOI: 10.1103/PhysRevE.79.026208.
  7. Hale JK, Lunel SMV. Introduction to Functional Differential Equations. New York: Springer; 1993.
  8. Rubanik VP. Oscillations of Quasilinear Systems with Delay. Moscow: Nauka; 1969. 287 p. (in Russian).
  9. Fowler AC, Kember G. Delay recognition in chaotic time series. Phys. Lett. A. 1993;175:402–408.
  10. Hegger R, Bunner MJ, Kantz H, Giaquinta A. Identifying and modeling delay feedback systems. Phys. Rev. Lett. 1998;81(3):558–561. DOI: 10.1103/PhysRevLett.81.558.
  11. Udaltsov VS, Goedgebuer JP, Larger L, Cuenot JB, Levy P, Rhodes WT. Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations. Phys. Lett. A. 2003;308(1):54–60. DOI: 10.1016/S0375-9601(02)01776-0.
  12. Tian YC, Gao F. Extraction of delay information from chaotic time series based on information entropy. Physica D. 1997;108:113–118. DOI: 10.1016/S0167-2789(97)82008-8.
  13. Kaplan DT, Glass L. Coarse-grained embeddings of time series: Random walks, Gaussian random process, and deterministic chaos. Physica D. 1993;64(4):431–454. DOI: 10.1016/0167-2789(93)90054-5.
  14. Bunner MJ, Popp M, Meyer Th, Kittel A, Rau U, Parisi J. Recovery of scaler time-delay systems from time series. Phys. Lett. A. 1996;211(6):345–349. DOI: 10.1016/0375-9601(96)00014-X.
  15. Bunner MJ, Ciofini M, Giaquinta A, Hegger R, Kantz H, Meucci R, Politi A. Reconstruction of systems with delayed feedback: I. Theory. Eur. Phys. J. D. 2000;10:165–176. DOI: 10.1007/s100530050538.
  16. Voss H, Kurths J. Reconstruction of non-linear time delay models from data by the use of optimal transformations. Phys. Lett. A. 1997;234:336–344. DOI: 10.1016/S0375-9601(97)00598-7.
  17. Ellner SP, Kendall BE, Wood SN, McCauley E, Briggs CJ. Inferring mechanism from time-series data: Delay differential equations. Physica D. 1997;110:182–194. DOI: 10.1016/S0167-2789(97)00123-1.
  18. Voss HU, Schwache A, Kurths J, Mitschke F. Equations of motion from chaotic data: A driven optical fiber ring resonator. Phys. Lett. A. 1999;256:47–54. DOI: 10.1016/S0375-9601(99)00219-4.
  19. Horbelt W, Timmer J, Voss HU. Parameter estimation in nonlinear delayed feedback systems from noisy data. Phys. Lett. A. 2002;299:513–521. DOI: 10.1016/S0375-9601(02)00748-X.
  20. Ortin S, Gutierrez JM, Pesquera L, Vasquez H. Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction. Physica A. 2005;351(1):133–141. DOI: 10.1016/j.physa.2004.12.015.
  21. Bezruchko BP, Karavaev AS, Ponomarenko VI, Prokhorov MD. Reconstruction of time-delay systems from chaotic time series. Phys. Rev. E. 2001;64:056216. DOI: 10.1103/PhysRevE.64.056216.
  22. Prokhorov MD, Ponomarenko VI, Karavaev AS, Bezruchko BP. Reconstruction of time-delayed feedback systems from time series. Physica D. 2005;203:209–223. DOI: 10.1016/j.physd.2005.03.013.
  23. Mensour B, Longtin A. Synchronization of delay-differential equations with application to private communication. Phys. Lett. A. 1998;244:59–70. DOI: 10.1016/S0375-9601(98)00271-0.
  24. Shahverdiev EM, Sivaprakasam S, Shore KA. Parameter mismatches and perfect anticipating synchronization in bidirectionally coupled external cavity laser diodes. Phys. Rev. E. 2002;66:017206. DOI: 10.1103/PhysRevE.66.017206.
  25. Bocharov GA, Rihan FA. Numerical modelling in biosciences using delay differential equations. J. Comp. Appl. Math. 2000;125:183–199. DOI: 10.1016/S0377-0427(00)00468-4.
  26. Kotani K, Takamasu K, Ashkenazy Y, Stanley HE, Yamamoto Y. Model for cardiorespiratory synchronization in humans. Phys. Rev. E. 2002;65:051923. DOI: 10.1103/PhysRevE.65.051923.
  27. Yanchuk S, Perlikowski P. Delay and periodicity. Phys. Rev. E. 2009;79:046221. DOI: 10.1103/PhysRevE.79.046221.
  28. Prokhorov MD, Ponomarenko VI. Estimation of coupling between time-delay systems from time series. Phys. Rev. E. 2005;72:016210. DOI: 10.1103/PhysRevE.72.016210.
  29. Prokhorov MD, Ponomarenko VI. Reconstruction of time-delay systems using small impulsive disturbances. Phys. Rev. E. 2009;80:066206. DOI: 10.1103/PhysRevE.80.066206.
  30. Pyragas K. Synchronization of coupled time-delay systems: Analytical estimations. Phys. Rev. E. 1998;58(3):3067–3071. DOI: 10.1103/PhysRevE.58.3067.
  31. Buric N, Vasovic N. Global stability of synchronization between delay-differential systems with generalized diffusive coupling. Chaos, Solitons and Fractals. 2007;31(2):336–342. DOI: 10.1016/j.chaos.2005.09.066.
  32. Ikeda K, Matsumoto K. High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D. 1987;29:223–235. DOI: 10.1016/0167-2789(87)90058-3.
Received: 
12.04.2010
Accepted: 
12.10.2010
Published: 
31.12.2010
Short text (in English):
(downloads: 33)