ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Tikhomirov A. A., Mishagin K. G., Laptyeva T. V., Kanakov O. I. Self-trapping and breathers in disordered nonlinear oscillatory lattices. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 6, pp. 16-30. DOI: 10.18500/0869-6632-2015-23-6-16-30

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 163)
Language: 
Russian
Article type: 
Article
UDC: 
530.182

Self-trapping and breathers in disordered nonlinear oscillatory lattices

Autors: 
Tikhomirov Andrej Aleksandrovich, Lobachevsky State University of Nizhny Novgorod
Mishagin Konstantin Gennadevich, Lobachevsky State University of Nizhny Novgorod
Laptyeva Tatjana Vladimirovna, Lobachevsky State University of Nizhny Novgorod
Kanakov Oleg Igorevich, Lobachevsky State University of Nizhny Novgorod
Abstract: 

We present a comparative study of two classes of solutions to Frohlich–Spencer– Wayne chain model with random spatial inhomogeneity (disorder): self-trapped wave packets on one hand, and discrete breathers (localized in space, time-periodic solutions) on the other. Wave packets are obtained by numerical integration of dynamical equations with single-site initial conditions. When given sufficient energy, the packet remains localized in space throughout the observation time. Breather solutions are constructed by continuation of a periodic orbit with coupling parameter increased from zero in successive small steps. Found solutions are examined for linear stability. We demonstrate that the great majority of disorder realizations exhibit linearly stable breathers on an interval of coupling parameter values from zero up to a finite realization-dependent threshold. The disappearance of a discrete breather is associated with the bifurcation in which a complex-conjugate pair of Floquet multipliers becomes equal to +1. When a discrete breather exists, self-trapping of wave packets depends upon the proximity of the corresponding trajectory in the phase space to the breather orbit. These observations allow us to associate the well-known self-trapping effect with the existence of stable breather orbits and to explain this effect by the influence of breather orbits upon the phase space structure in their neighbourhood. The presented results are of interest for developing the theoretical description of physical systems characterized by the simultaneous presence of nonlinearity, spatial discreteness and disorder (Bose–Einstein condensates, lattices of coupled optical waveguides, micro-and nanomechanical systems etc.).

Reference: 
  1. Evers F. and Mirlin A. Anderson transitions // Rev. Mod. Phys. 2008. Vol. 80. 1355.
  2. Anderson P.W. Absence of diffusion in certain random lattices // Physical Review. 1958. Vol. 109. P. 1492.
  3. Schwartz T., Bartal G., Fishman S., and Segev M. Transport and Anderson localization in disordered two-dimensional photonic lattices // Nature. 2007. Vol. 446. P. 52.
  4. Lahini Y., Avidan A., Pozzi F., Sorel M., Morandotti R., Christodoulides D.N., and Silberberg Y. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices // Physical Review Letters. 2008. Vol. 100. 013906.
  5. Segev M., Silberberg Y., and Christodoulides D.N. Anderson localization of light // Nature Photonics. 2013. Vol. 7. P. 197.
  6. Billy J., Josse V., Zuo Z., Bernard A., Hambrecht B., Lugan P., Clement D., Sanchez- Palencia L., Bouyer P., and Aspect A. Direct observation of Anderson localization of matter waves in a controlled disorder // Nature. 2008. Vol. 453. P. 891.
  7. Roati G., D’Errico C., Fallani L., Fattori M., Fort C., Zaccanti M., Modugno G., Modugno M., and Inguscio M. Anderson localization of a non-interacting Bose–Einstein condensate // Nature. 2008. Vol. 453. 895898.
  8. Kondov S.S., McGehee W.R., Zirbel J.J., and DeMarco B. Three-dimensional Anderson localization of ultracold matter // Science. 2011. Vol. 334. P. 66.
  9. Jendrzejewski F., Bernard A., Muller K., Cheinet P., Josse V., Piraud M., Pezze L., Sanchez-Palencia L., Aspect A., and Bouyer P. Three-dimensional localization of ultracold atoms in an optical disordered potential // Nature Physics. 2012. Vol. 8. P. 398.
  10. Flach S. and Gorbach A. Computational studies of discrete breathers – from basics to competing length scales // Int. J. Bif. Chaos. 2006. Vol. 16.P. 1645.
  11. Flach S. and Willis C.R. Discrete breathers // Physics Reports. 1998. Vol. 295. P. 181.
  12. Flach S. and Gorbach A. Discrete breathers – advances in theory and applications // Physics Reports. 2008. Vol. 467. P. 1.
  13. Ivanchenko M.V., Kanakov O.I., Shalfeev V.D., and Flach S. Discrete breathers in  transient processes and thermal equilibrium // Physica D: Nonlinear Phenomena. 2004. Vol. 198. P. 120.
  14. Chechin G.M., Dzhelauhova G.S., and Mehonoshina E.A. Quasibreathers as a generalization of the concept of discrete breathers // Physical Review E. 2006. Vol. 74, No 3. 036608.
  15. Chechin G.M. and Dzhelauhova G.S. Discrete breathers and nonlinear normal modes in monoatomic chains // Journal of Sound and Vibration. 2009. Vol. 322, No 3. P. 490.
  16. Chechin G.M. and Lobzenko I.P. Ab initio refining of quasibreathers in graphane // Letters on materials. 2014. Vol. 4, No 4. P. 226.
  17. Flach S., Ivanchenko M.V., and Kanakov O.I. q-Breathers and the Fermi–Pasta–Ulam problem // Physical Review Letters. 2005. Vol. 95, No 6. P. 064102.
  18. Flach S., Kanakov O.I., Mishagin K.G., and Ivanchenko M.V. q-Breathers in FPU-lattices – scaling and properties for large systems // International Journal of Modern Physics B. 2007. Vol. 21, (23n24). P. 3925.
  19. Sato M. and Sievers A.J. Direct observation of the discrete character of intrinsic localized modes in an antiferromagnet // Nature. 2004. Vol. 432. P. 486.
  20. Fleischer J.W., Carmon T., Segev M., Efremidis N.K., and Christodoulides D.N. Observation of discrete solitons in optically induced real time waveguide arrays // Physical Review Letters. 2003. Vol. 90. 023902.
  21. Sato M., Hubbard B.E., Sievers A.J., Ilic B., Czaplewski D.A., and Craighead H.G. Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array // Physical Review Letters. 2003. Vol. 90. 044102.
  22. Pikovsky A.S. and Shepelyansky D.L. Destruction of Anderson localization by a weak nonlinearity // Physical Review Letters. 2008. Vol. 100. 094101.
  23. Veksler H., Krivolapov Y., and Fishman S. Spreading for the generalized nonlinear Schrodinger equation with disorder // Physical Review E. 2009. Vol. 80. 037201.  
  24. Flach S., Krimer D.O., and Skokos Ch. Universal spreading of wave packets in disordered nonlinear systems // Physical Review Letters. 2009. Vol. 102. 024101.
  25. Skokos Ch., Krimer D.O., Komineas S., and Flach S. Delocalization of wave packets in disordered nonlinear chains // Physical Review E. 2009. Vol. 79. 056211.
  26. Laptyeva T.V., Bodyfelt J.D., Krimer D.O., Skokos Ch., and Flach S. The crossover from strong to weak chaos for nonlinear waves in disordered systems // Europhys. Lett. 2010. Vol. 91. 30001.
  27. Flach S. Spreading of waves in nonlinear disordered media // Chemical Physics. 2010. Vol. 375. P. 548.
  28. Bodyfelt J.D., Laptyeva T.V., Gligoric G., Krimer D.O., Skokos Ch., and Flach S. Wave interactions in localizing media – a coin with many faces // International Journal of Bifurcation and Chaos. 2011. Vol. 21. 2107.
  29. Ivanchenko M.V., Laptyeva T.V., and Flach S. Anderson localization or nonlinear waves: A matter of probability // Physical Review Letters. 2011. Vol. 107. 240602.
  30. Lucioni E., Deissler B., Tanzi L., Roati G., Zaccanti M., Modugno M., Larcher M., Dalfovo M., Inguscio M., and Modugno G. Observation of subdiffusion in a disordered interacting system // Physical Review Letters. 2011. Vol. 106. 230403.
  31. Pertsch T., Peschel U., Kobelke J., Schuster K., Bartelt H., Nolte S., Tunnermann A., and Lederer F. Nonlinearity and disorder in fiber arrays // Physical Review Letters. 2004. Vol. 93. P. 053901.
  32. Naether U., Heinrich M., Lahini Y., Nolte S., Vicencio R.A., Molina M.I., and Szameit A. Self-trapping threshold in disordered nonlinear photonic lattices // Optics Letters. 2013. Vol. 38. P. 1518.
  33. Vicencio R.A. and Flach S. Control of wave packet spreading in nonlinear finite disordered lattices // Physical Review E. 2009. Vol. 79. 016217.
  34. Naether U., Martinez A.J., Guzman-Silva D., Molina M.I., and Vicencio R.A. Self-trapping transition in nonlinear cubic lattices // Physical Review E. 2013. Vol. 87. 062914.
  35. Albanese C. and Frohlich J. Perturbation theory for periodic orbits in a class of infinite dimensional Hamiltonian systems // Communications in Mathematical Physics. 1991. Vol. 138. P. 193.
  36. MacKay R.S. and Aubry S. Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators // Nonlinearity. 1994. Vol. 7. P. 1623.
  37. Kopidakis G. and Aubry S. Intraband discrete breathers in disordered nonlinear systems // Physica D: Nonlinear Phenomena. 1999. Vol. 130. P. 155.
  38. Frohlich J., Spencer T., and Wayne C.E. Localization in disordered, nonlinear dynamical systems // J. Stat. Phys. 1986. Vol. 42. P. 247.
  39. Marin J.L. and Aubry S. Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit // Nonlinearity. 1996. Vol. 9, No 6. P. 1501.
  40. More J.J. The Levenberg–Marquardt algorithm: implementation and theory // In Numerical analysis. 1978. Springer. P. 105.
  41. Lobzenko I.P., Chechin G.M. Numerical simulations of mobile discrete breathers in monoatomic chains // Vestnik of Lobachevsky State University of Nizhni Novgorod. 2013. Vol. 4, No 1. P. 67. (In Russian).
  42. More J.J., Sorensen D.C., Hillstrom K.E., and Garbow B.S. The MINPACK project // Sources and Development of Mathematical Software. 1984. P. 88.
Received: 
16.11.2015
Accepted: 
16.11.2015
Published: 
29.04.2016
Short text (in English):
(downloads: 87)