ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Mikhaylov A. O., Komarov M. A., Osipov G. V. Sequential switching activity in the ensemble of nonidentical poincare systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 5, pp. 79-91. DOI: 10.18500/0869-6632-2013-21-5-79-91

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 48)
Article type: 

Sequential switching activity in the ensemble of nonidentical poincare systems

Mikhaylov Aleksej Olegovich, Lobachevsky State University of Nizhny Novgorod
Komarov Maksim Andreevich, Lobachevsky State University of Nizhny Novgorod
Osipov Grigorij Vladimirovich, Lobachevsky State University of Nizhny Novgorod

Switching activity in the ensemble of inhibitory coupled Poicare systems is considered. The existence of heteroclinic contour in the phase space at the certain domain of parameter space has shown. Dynamics of the ensemble of non-identical inhibitory and diffusively coupled systems of Poincare is considered. The approximate bifurcation diagrams for all qualitatively different regimes of the network activity have shown. There are areas of the parameter space corresponding to different dynamic regimes, such as multistability, extinction, modulation, bursting and synchronization.

  1. Komarov MA, Osipov GV, Suykens JAK, Rabinovich MI. Numerical studies of slow rhythms emergence in neural microcircuits: Bifurcations and stability. CHAOS. 2009;19(1):015107. DOI: 10.1063/1.3096412.
  2. Galan R, Sasche S, Galicia CG, Herz AV. Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neur. Comput. 2004;16(5):999–1012. DOI: 10.1162/089976604773135078.
  3. Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverstone AI. Dual sensorymotor function for a molluskan statocyst network. J. Neurophysiol. 2004;91(1):336–345. DOI: 10.1152/jn.00753.2003.
  4. Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI. Dynamical principles in neuroscience. Rev. Mod. Phys. 2006;78(4):1213–1265. DOI: 10.1103/RevModPhys.78.1213.
  5. Hahnloser RHR, Kozhevnikov AA, Fee MS. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature (London). 2002;419(6902):65–70. DOI: 10.1038/nature00974.
  6. Ashwin P, Burylko O, Maistrenko Y. Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators. Physica D. 2008;237(4):454–466. DOI: 10.1016/j.physd.2007.09.015.
  7. Ashwin P, Field M. Heteroclinic networks in coupled cell systems. Archive for Rational Mechanics and Analysis. 1999;148(2):107–143. DOI: 10.1007/S002050050158.
  8. Seliger P, Tsimring LS, Rabinovich MI. Dynamics-based sequential memory: Winnerless competition of pattern. Phys. Rev. E. 2003;67(1):011905. DOI: 10.1103/PhysRevE.67.011905.
  9. Afraimovich VS, Rabinovich MI, Varona P. Heteroclinic contours in neural ensembles and the winnerless competition principle. Int. J. Bif. and Chaos. 2004;14(4):1195–1208. DOI: 10.1142/S0218127404009806.
  10. Afraimovich VS, Zhigulin VP, Rabinovich MI. On the origin of reproducible sequential activity in neural circuits. CHAOS. 2004;14(4):1123–1129. DOI: 10.1063/1.1819625.
  11. Komarov MA, Osipov GV, Suykens JAK. Sequentially activated groups in neural networks. Europhys. Lett. 2009;86(6):60006. DOI: 10.1209/0295-5075/86/60006.
Short text (in English):
(downloads: 75)