ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Makarov V. A., Nekorkin V. I. Spatial-time dynamics of auto-oscillation elements chain. Izvestiya VUZ. Applied Nonlinear Dynamics, 1994, vol. 2, iss. 2, pp. 3-9.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
621.373.1

Spatial-time dynamics of auto-oscillation elements chain

Autors: 
Makarov Valerij Anatolevich, Lobachevsky State University of Nizhny Novgorod
Nekorkin Vladimir Isaakovich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

The investigation of spatial-time behaviour of the chain of diffusionally bounded auto—oscillation elements with a rigid state of excitation is carried out. It is stated that there is spatial disorder and its evolutional character is demonstrated.

Key words: 
Reference: 
  1. Rabinovich МI, Fabrikant AL, Tsimring LSh. Finite-dimensional spatial disorder. Sov. Phys. Usp. 1992;35(8):629-649. DOI: 10.1070/PU1992v035n08ABEH002253.
  2. Collet P, Eckmann J-Р. Space—time behaviour in problems of hydrodynamic type: a case study. Nonlinearity. 1992;5:1265-1302. DOI: 10.1088/0951-7715/5/6/004.
  3. Aranson IS, Gaponov-Grekhov AV, Rabinovich МI, Rogalskii AV, Sagdeev RV. Lattice models in nonlinear dynamics of non-equilibrium media. Preprint No. 163 Institute of Applied Physics AS USSR. Gorky; 1987. 24 p.
  4. Bunimovich LA, Sinai YaG. Spacetime chaos in coupled map lattices. Nonlinearity. 1988;1(4):491-516. DOI: 10.1088/0951-7715/1/4/001.
  5. Kaneko К. Spatiotemporal chaos in one— and two-dimensional coupled map lattices. Physica D. 1989;37(1-3):60-82. DOI: 10.1016/0167-2789(89)90117-6.
  6. Defontaines А-D, Pomeau Y, Rostand В. Chain of coupled bistable oscillators: A model. Physica D. 1990;46(2):201-216. DOI: 10.1016/0167-2789(90)90036-O.
  7. Afraimovich VS, Nekorkin VI. Stable states in chain models of unlimited, non-equilibrium media. Math. Model. 1991;3(12):65-77.
  8. Bogolyubov NN, Mitropolskii YuА. Asymptotic Methods in the Theory of Nonlinear Oscillations. М.: Nauka; 1974. 504 p.
  9. Romanovskii YuМ, Stepanova NV, Chernavskii DS. Mathematical Modelling in Biophysics. М.: Nauka; 1975. 343 p.
  10. Vasilyev VA, Romanovskii YuМ, Yakhno VG. Autowave Processes. М.: Nauka; 1987. 240 p.
  11. Nekorkin VI. Spatial chaos in a discrete model of the radio engineering environment. Sov. J. Comm. Tech. Electron. 1992;4:651-660.
  12. Nitecki Z. Differentiable Dynamics: An Introduction to the Orbit Structure of Diffeomorphisms. Cambridge: МIT Press; 1971. 282 p.
  13. Horn RA, Johnson CR. Matrix Analysis. Cambridge: Cambridge University Press; 1990. 561 p.
Received: 
17.01.1994
Accepted: 
22.03.1994
Published: 
08.08.1994