ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Rozhnev A. G., Melnikova M. M., Ryskin N. M. Spectral approach with iterative clarification of a radiation boundary conditions for modeling of quasimodes of a gyrotrons open cavities. Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, vol. 32, iss. 3, pp. 305-331. DOI: 10.18500/0869-6632-003103, EDN: MXUNCA

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
530.182
EDN: 

Spectral approach with iterative clarification of a radiation boundary conditions for modeling of quasimodes of a gyrotrons open cavities

Autors: 
Rozhnev Andrej Georgievich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Melnikova Marija Mihajlovna, Saratov State University
Ryskin Nikita Mikhailovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Purpose. The article presents a new method for numerical simulation of quasi-eigenmode oscillations in open resonators of gyrotrons — powerful vacuum generators of electromagnetic waves in the millimeter and submillimeter ranges. The gyrotron cavity has the shape of a weakly inhomogeneous hollow circular metal waveguide.

Methods. The proposed approach uses the inhomogeneous string equation with radiation boundary conditions to formulate a nonlinear spectral boundary value problem describing oscillations in a resonator, neglecting the couplings of waves with different radial indices. By linearizing with respect to frequency the radiation boundary conditions, the boundary value problem is reduced to a linear boundary value problem. To discretize this boundary value problem, the finite difference method is used and a linear generalized matrix eigenvalue problem is formulated. This problem is solved by the Arnoldi method with eigenvalues calculation in a shift-invert mode. An iterative algorithm is proposed that makes it possible to sequentially calculate a given number of frequencies and quality factors of quasi-eigenmodes of oscillations.

Results. The computer program was developed written in the Wolfram Language and Fortran using the algorithms proposed in the work. The results of test calculations for real gyrotron resonators are presented, which demonstrate the high accuracy of the obtained values of frequencies, quality factors and field distributions of quasi-eigenmode oscillations in the studied resonators.

Conclusion. The methods, algorithms and created program proposed in the article can significantly facilitate the process of developing gyrotrons intended for various practical applications and operating in new frequency ranges. The method of iterative refinement of boundary conditions can be generalized to the case of equations of the linear theory of a gyrotron and used to develop new methods for analyzing the starting conditions for the soft self-excitation in gyrotrons — generators.

Acknowledgments: 
This study was performed within the framework of a state order to the Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
Reference: 
  1. Flyagin VA, Gaponov AV, Petelin MI, Yulpatov VK. The gyrotron. IEEE Transactions on microwave theory and techniques. 1977;25(6):514–521. DOI: 10.1109/TMTT.1977.1129149.
  2. Nusinovich GS. Introduction to the Physics of Gyrotron. Baltinore and London: Johns Hopkins University Press; 2004. 335 p.
  3. Kartikeyan MV, Borie E, Thumm M. Gyrotrons: High-Power Microwave and Millimeter Wave Technology. Berlin, Heidelberg, New York: Springer Verlag; 2003. 228 p.
  4. Thumm M. Progress on gyrotrons for ITER and future thermonuclear fusion reactors. IEEE transactions on plasma science. 2011;39(4):971–979. DOI: 10.1109/TPS.2010.2095042.
  5. Glyavin MY, Idehara T, Sabchevski SP. Development of THz gyrotrons at IAP RAS and FIR UF and their applications in physical research and high-power THz technologies. IEEE Transactions on Terahertz Science and Technology. 2015;5(5):788–797. DOI: 10.1109/TTHZ.2015.2442836.
  6. Hornstein MK, Bajaj VS, Griffin RG, Kreischer KE, Mastovsky I, Sirigiri JR, Shapiro MA, Temkin RJ. Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator. IEEE Transactions on Electron Devices. 2005;52(5):798–807. DOI: 10.1109/TED.2005.845818.
  7. Chang TH, Idehara T, Ogawa I, Agusu L, Kobayashi S. Frequency tunable gyrotron using backward-wave components. Journal of Applied Physics. 2009;105(6):063304. DOI: 10.1063/ 1.3097334.
  8. Torrezan AC, Han ST, Mastovsky I, Shapiro MA, Sirigiri JR, Temkin RJ, Barnes AB, Griffin RG. Continuous-wave operation of a frequency-tunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance. IEEE Transactions on Plasma Science. 2010;8(6): 1150–1159. DOI: 10.1109/TPS.2010.2046617.
  9. Torrezan AC, Shapiro AC, Sirigiri JR, Temkin RJ, Griffin RG. Operation of a continuously frequency-tunable second-harmonic CW 330-GHz gyrotron for dynamic nuclear polarization. IEEE Transaction on Electron Devices. 2011;58(8):2777–2783. DOI: 10.1109/TED.2011.2148721.
  10. Glyavin MYu, Denisov GG, Zapevalov VE, Koshelev MA, Tretyakov MYu,Tsvetkov AI. High power terahertz sources for spectroscopy and material diagnostics. Physics-Uspekhi. 2016; 59(6):595–677. DOI: 10.3367/ufne.2016.02.037801.
  11. Sabchevski S, Glyavin M. Development and application of THz gyrotrons for advanced spectroscopic methods. Photonics. 2023;12(2):189–207. DOI: 10.3390/photonics10020189.
  12. Siegel PH. Terahertz technology in biology and medicine. IEEE Transactions on Microwave Theory and Techniques. 2004;52(10):2438–2447. DOI: 10.1109/TMTT.2004.835916.
  13. Pilossof M, Einat M. Note: A 95 GHz mid-power gyrotron for medical applications measurements. Review of Scientific Instruments. 2015;86(1):016113. DOI: 10.1063/1.4906507.
  14. Cheon H, Yang HJ, Lee SH, Kim YA, Son JH. Terahertz molecular resonance of cancer DNA // Scientific Reports. 2016;6(1):37103. DOI: 10.1038/srep37103.
  15. Miyoshi N, Idehara T, Khutoryan E, Fukunaga Y, Bibin AB, Ito S, Sabchevski SP. Combined hyperthermia and photodynamic therapy using a sub-THz gyrotron as a radiation source. Journal of Infrared, Millimeter, and Terahertz Waves. 2016;37(8):805–814. DOI: 10.1007/s10762-016-0271-z.
  16. Bykov Y, Eremeev A, Glyavin M, Kholoptsev V, Luchinin A, Plotnikov G, Denisov A, Bogdashev G, Kalynova V, Semenov N, Zharova N. 24-84-GHz gyrotron systems for technological microwave applications. IEEE Transactions on Plasma Science. 2004;32(1):67–72. DOI: 10.1109/TPS.2004. 823904.
  17. Bratman VL, Bogdashov AA, Denisov GG, Glyavin MYu, Kalynov YuK, Luchinin AG, Manuilov VN, Zapevalov VE, Zavolsky NA, Zorin VG. Gyrotron development for high power THz technologies at IAP RAS. Journal of Infrared, Millimeter, and Terahertz Waves. 2012;33(7): 715–723. DOI: 10.1007/s10762-012-9898-6.
  18. Aripin H, Mitsudo S, Prima ES, Sudiana IN, Tani S, Sako K, Fujii Y, Saito T, Idehara T, Sano S, Purwasasmita BS, Sabchevski S. Structural and microwave properties of silica xerogel glass ceramic sintered by sub-millimeter wave heating using a gyrotron. Journal of Infrared, Millimeter, and Terahertz Waves. 2012;33(12):1149–1162. DOI: 10.1007/s10762-012-9925-7.
  19. Glyavin M, Sabchevski S, Idehara T, Mitsudo S. Gyrotron-based technological systems for material processing – current status and prospects. Journal of Infrared, Millimeter, and Terahertz Waves. 2020;41(8):1022–1037. DOI: 10.1007/s10762-020-00727-w.
  20. Federici J, Moeller L. Review of terahertz and subterahertz wireless communications. Journal of Applied Physics. 2010;107(11):111101. DOI: 10.1063/1.3386413.
  21. Idehara T, Mitsudo S, Ogawa I. Development of high-frequency, highly stable gyrotrons as millimeter to submillimeter wave radiation sources. IEEE Transactions on Plasma Science. 2004;32(3):910–916. DOI: 10.1109/TPS.2004.827599.
  22. Idehara T, Tsuchiya H, Watanabe O, Agusu L, Mitsudo S. The first experiment of a THz gyrotron with a pulse magnet. International Journal of Infrared and Millimeter Waves. 2006;27(3):319–331. DOI: 10.1007/S10762-006-9084-9.
  23. Glyavin MYu, Luchinin AG, Golubiatnikov GYu. Generation of 1.5-kW, 1-THz Coherent Radiation from a Gyrotron with a Pulsed Magnetic Field. Phys. Rev. Lett. 2008;100:015101. DOI: 10.1103/PhysRevLett.100.015101.
  24. Bratman VL, Kalynov YuK, Manuilov VN. Large-orbit gyrotron operation in the terahertz frequency range. Phys. Rev. Lett. 2009;102:245101. DOI: 10.1103/PhysRevLett.102.245101.
  25. Bandurkin I, Fedotov A, Glyavin M, Idehara T, Malkin A, Manuilov V, Sergeev A, Tsvetkov A, Zaslavsky V, Zotova I. Development of third-harmonic 1.2-THz gyrotron with intentionally increased velocity spread of electrons. IEEE Transactions on Electron Devices. 2020;67(10):4432– 4436. DOI: 10.1109/TED.2020.3012524.
  26. Botton M, Antonsen TM, Levush B, Nguyen KT, Vlasov AN. MAGY: A time-dependent code for simulation of slow and fast microwave sources. IEEE Transactions on Plasma Science. 1998;26(3):882–892. DOI: 10.1109/27.700860.
  27. Stock A, Neudorfer J, Riedlinger M, Pirrung G, Gassner G, Schneider R, Roller S, Munz CD. Three-dimensional numerical simulation of a 30-GHz gyrotron resonator with an explicit high-order discontinuous-Galerkin-based parallel article-in-cell method. IEEE Transactions on Plasma Science. 2012;40(7):1860–1870. DOI: 10.1109/TPS.2012.2195509.
  28. Lin MC, Smithe DN, Guss WC, Temkin RJ. Hot test of gyrotron cavity interaction using a 3D CFDTD PIC method. 15th IEEE International Vacuum Electronics Conference. 2014. P. 87–88. IEEE. DOI: 10.1109/IVEC.2014.6857503.
  29. Rozental RM, Tai EM, Tarakanov VP, Fokin AP. Using the 2.5-dimensional PIC code for simulating gyrotrons with nonsymmetric operating modes. Radiophysics and Quantum Electronics. 2023;65(5–6):384–396. DOI: 10.1007/s11141-023-10221-7.
  30. Fliflet AW, Read ME. Use of weakly irregular waveguide theory to calculate eigenfrequencies, Q values, and RF field functions for gyrotron oscillators. International Journal of Electronics Theoretical and Experimental. 1981;51(4):475–484. DOI: 10.1080/00207218108901350.
  31. Borie E, Dumbrajs O. Calculation of eigenmodes of tapered gyrotron resonators // International Journal of Electronics. 1986;60(2):143–154. DOI: 10.1080/00207218608920768.
  32. Sabchevski S, Idehara T, Saito T, Ogawa I, Mitsudo S, Tatematsu Y. Physical models and computer codes of the GYROSIM (GYROtron SIMulation) software package [Electronic resource]. FIR Center Report FIR FU-99. 2010. Available from: http://fir.u-fukui.ac.jp/FIR_FU99S. pdf.
  33. Avramides KA, Pagonakis IG, Iatrou CT, Vomvoridis JL. EURIDICE: A code-package for gyrotron interaction simulations and cavity design. EPJ Web of Conferences. 2012;32:04016. DOI: 10.1051/epjconf/20123204016.
  34. Melnikova ММ, Rozhnev AG. Program for calculation of the eigenmodes electrodynamic parameter in the gyrotron with nonfixed field structure // Certificate of state registration of a computer program no. 2015615762, 22 May. 2015. (in Russian).
  35. Bera A, Sinha AK. A novel approach for computation of high-order axial modes in a gyrotron resonator. IEEE Transactions on Electron Devices. 2018;65(12):5505–5510. DOI: 10.1109/TED. 2018.2877843.
  36. Sawant A, Choi E. Development of the full package of gyrotron simulation code. Journal of the Korean Physical Society. 2018;73(11):1750–1759. DOI: 10.3938/jkps.73.1750.
  37. Wang P, Chen X, Xiao H, Dumbrajs O, Qi X, Li L. GYROCOMPU: Toolbox designed for the analysis of gyrotron resonators. IEEE Transactions on Plasma Science. 2020;48(9): 3007–3016. DOI: 10.1109/TPS.2020.3013299.
  38. Semenov E, Zapevalov V, Zuev A. Methods for Simulation the nonlinear dynamics of gyrotrons. In: Balandin D, Barkalov K, Gergel V, Meyerov I. (eds). Mathematical Modeling and Supercomputer Technologies. MMST 2020. Communications in Computer and Information Science. Vol. 1413. Springer. 2021. P. 49–62. DOI: 10.1007/978-3-030-78759-2_4.
  39. Vainshtein LA. Open Resonators and Open Waveguides. Golem Press; 1969. 439 p.
  40. Vlasov SN, Zhisllin GM, Orlova IM, Petelin MI, Rogacheva GG. Irregular waveguides as open resonators. Radiophysics and Quantum Electronics. 1969;12(8):972–978.
  41. Vlasov CN, Orlova IM, Petelin MI. Gyrotron cavities and electodynamic mode selection. In: Gaponov-Grekhov AV, editor. Gyrotron. Gorky, USSR: Inst. Appl. Phys. Acad. Sci. USSR; 1981:62–76 (in Russian).
  42. Chu KR, Kou CS, Chen JM, Tsai YC, Cheng C, Bor SS, Chang LH. Spectral domain analysis of open cavities. International Journal of Infrared and Millimeter Waves. 1992;13(10):1571–1598. DOI: 10.1007/BF01009236.
  43. Hung CL, Tsai YC, Chu KR. A study of open-end cavities by the field-energy method. IEEE Transactions on Plasma Science. 1998;26(3):931–939 DOI: 10.1109/27.700874.
  44. Hung CL, Yeh YS. Spectral domain analysis of coaxial cavities. International Journal of Infrared and Millimeter Waves. 2003;24(12):2025–2041. DOI: 10.1023/B:IJIM.0000009758.76835.1f.
  45. Sabchevski SP, Idehara T. A numerical study on finite-bandwidth resonances of high-order axial modes (HOAM) in a gyrotron cavity. Journal of Infrared, Millimeter, and Terahertz Waves. 2015;36(7):628–653. DOI: 10.1007/s10762-015-0161-9.
  46. Genoud J, Tran TM, Alberti S, Braunmueller F, Hogge J-Ph, Tran MQ, Guss WC, Temkin RJ. Novel linear analysis for a gyrotron oscillator based on a spectral approach. Physics of Plasmas. 2016;2(4):043101. DOI: doi.org/10.1063/1.4945611.
  47. Ilınskiı AS, Slepyan GYa. Oscillations and waves in a electordynamic structures with losses. Moscow: Moscow State University; 1983. 232 p. (in Russian).
  48. Genoud J, Alberti S, Tran TM, Le Bars G, Kaminski P, Hogge JP, Avramidis KA, Tran MQ. Parasitic oscillations in smooth-wall circular symmetric gyrotron beam ducts. Journal of Infrared, Millimeter, and Terahertz Waves. 2019;40(2):131–149. DOI: 10.1063/1.4945611.
  49. Chu KR, Chen HY, Hung CL, Chang TH, Barnett LR, Chen SH, Yang TT, Dialetis DJ. Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier. IEEE Transactions on Plasma Science. 1999;27(2):391–404. DOI: 10.1109/27.772266.
  50. Parlett BN. The Symmetric Eigenvalue Problem. First ed. NJ, USA: Prentice-Hall, Englewood Cliffs; 1980. 368 p.
  51. Demmel JW. Applied Numerical Linear Algebra. Ca, USA: University of California; 1997. 419 p.
  52. Golub GH, Van Loan CF Matrix Computations. 3th ed. Baltimore & London: John Hopkins University Press; 1996. 694 p.
  53. Lehoucq RB, Sorensen DC, Yang C. ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. Society for Industrial and Applied Mathematics. 1997.
  54. Petelin MI, Yulpatov VK. Linear theory of a monotron cyclotron-resonance maser. I. Radiophys Quantum Electron. 1975;18(2):212–219. DOI: doi.org/10.1007/BF01036881.
  55. Petelin MI. Self-excitation of oscillations in a gyrotron. In: Gaponov-Grekhov AV, editor. Collected papers. Gorki: Inst. Appl. Phys. USSR Academy of Science; 1981. P. 5–25.
  56. Borie E, Jodicke B. Comments on the Linear Theory of the Gyrotron. IEEE Transaction on Plasma Science. 1988;16(2):116–121. DOI: 10.1109/27.3802.
  57. Rozhnev AG, Adilova AB, Grigorieva NV, Ryskin NM. A program for calculating the properties of axial oscillation modes in an open gyrotron cavity by the finite difference method with boundary conditions linearized in the spectral parameter («GyrotronCavityFDM»). Certificate of state registration of a computer program № 2033613828, 09 May, 2023 (in Russian).
  58. Yamaguchi Y, Tatematsu Y, Saito T, Kuwahara T, Ikeda R, Ogawa I, Idehara T, Dumbrajs O. Experimental verification of a self-consistent calculation for continuous frequency-tune with a 400 GHz band second harmonic gyro-BWO. In: Proceedings of the 38th Int. Conf. on Infr., Mill. and Terahertz Waves (IRMMW-THz). 01-06 September 2013, Mainz, Germany. New York: IEEE; 2013. P. 1–2. DOI: 10.1109/IRMMW-THz.2013.6665445.
  59. Kumar A, Kumar N, Singh U, Khatun H, Vyas V, Sinha AK. Design of interaction cavity of a 170-GHz, 1-MW gyrotron for ECRH application. Vacuum. 2011;86(2):184–188. DOI: 10.1016/ j.vacuum.2011.06.002.
  60. Thumm M. Effective cavity length of gyrotrons. Journal of Infrared, Millimeter, and Terahertz Waves. 2014;35(12):1011–1017. DOI: doi.org/10.1007/s10762-014-0102-z.
  61. Hairer E, Wanner G. Solving Ordinary Differential Equations II. Stiff and Differencial-Algebraic Problems. Second Revised ed. Berlin: Springer-Verlag; 1996. 614 p.
Received: 
30.11.2023
Accepted: 
25.12.2023
Available online: 
10.04.2024
Published: 
31.05.2024