For citation:
Kuznetsov A. P., Turukina L. V. Synchronization of self-oscillating Van der Pol - duffing system by the short pulses. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 5, pp. 16-31. DOI: 10.18500/0869-6632-2004-12-5-16-31
Synchronization of self-oscillating Van der Pol - duffing system by the short pulses
The brief review of the works devoted to features of dynamics of nonautonomous systems with a limit cycle as a circle and Van der Pol system under the periodic sequence of delta-pulses is given. Dynamics of Van der Pol - Duffing system under such sequence of pulses is considered. 2D and 1D maps are constructed using the method of slow amplitudes. Structure of the parameter space (period and amplitude of the pulses) of these maps and differential system is studied. The role of cubic nonlinearity typical for Van der Pol - Duffing system is discussed.
1. Berger P, Pomo I, Vidal K. Order in Chaos. On the deterministic approach to turbulence. Moscow: Mir; 1991. 368 p.
2. Schuster G, Deterministic Chaos. Moscow: Mir; 1990. 240 p.
3. Ott Е. Chaos in Dynamical Systems. Cambridge: Cambridge University Press; 1993. 397 p.
4. Anishchenko VS. Complex Oscillations in Simple Systems. Moscow: Nauka; 1990. 312 p.
5. Winfree AT. The Geometry оf Biological Time. Berlin: Springer; 1980. xiii, 530 p.
6. Caldas IL, Tasson H. Limit cycles оf periodically forced oscillations. Phys. Lett. 1989;A135:264–266.
7. Steeb WH, Kunick A. Chaos in limit-cycle systems with external periodic excitation. Int. J. of Nonlinear Mechanics. 1987. 349(22):361–422.
8. Pikovsky A, Rosenblum M, Kurths J. Synchronization. Cambridge, 2001. 411 p. DOI: 10.1017/CBO9780511755743.
9. Pikovsky AS, Rosenblum MG, Osipov GV, Kurths J. Phase synchronization of chaotic oscillators by external driving. Physica. 1997;D104:219.
10. Gonzalez DL, Piro O. Chaos in a nonlinear driven oscillator with exact solution // Phys. Rev. Lett. 1983;50(12):870. DOI: 10.1103/PhysRevLett.50.870.
11. Ding EJ. Analytic treatment of periodic orbit systematics for a nonlinear driven oscillator. Phys. Rev. 1986;A34(4):3547 – 3550.
12. Ding EJ. Analytic treatment of a driven oscillator with a limit cycle. Phys. Кеу. 1987;A35(6):2669–2683. DOI: 10.1103/physreva.35.2669.
13. Ding EJ. Structure of parameter space for a prototype nonlinear oscillator. Phys. Rev. 1987;A36(3):1488–1491. DOI: 10.1103/physreva.36.1488.
14. Ding EJ. Structure of the parameter space for the van der Pol oscillato. Physica Scripta. 1988;38(1):9 –17. DOI: 10.1088/0031-8949/38/1/001.
15. Ullmann K, Caldas IL. Transitions т the parameter space of a periodically forced dissipative system. Chaos, Solitons & Fractals. 1996;11:1913.
16. Keener JP, Glass L. Global bifurcation of a periodically forced nonlinear oscillator. J Math. Biology 1984;21:175–190.
17. Glass L, Sun J. Periodic forcing оf а limit-cycle oscillator: Fixed points, Arnold tongues, and the global organization of bifurcations. Phys. Rev. 1994;50(6):5077–5084. DOI: 10.1103/physreve.50.5077.
18. Ding EJ, Hemmer PC. Exact treatment оf mode locking for а piecewise linear mар. Journal оf Statistical Physics. 1987;46(1–2):99–110.
19. Kuznetsov AP, Turukina LV. Van der Pol oscillator by pulse action: from flow to displays. Izvestiya VUZ. Applied Nonlinear Dynamics. 2001;9(6):69.
20. Kuznetsov SP. Cynamic chaos. Moscow: Fizmatlit; 2001. 296 p.
21. Glass L, Guevara MR, Belair J, Shrier A. Global bifurcations оf а periodically forced biological oscillator. Phys. Rev. А. 1983;29:1348. DOI: 10.1103/PhysRevA.29.1348.
22. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear oscillations. Moscow: Fizmatlit; 2002. 292 p.
- 366 reads