ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kornilov M. V., Kapustnikov A. A., Sozonov E. A., Sysoeva M. V., Sysoev I. V. Synchronization regimes in the ring of rodent hippocampal neurons at limbic epilepsy. Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, vol. 32, iss. 3, pp. 357-375. DOI: 10.18500/0869-6632-003113, EDN: DFZESJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
530.182
EDN: 

Synchronization regimes in the ring of rodent hippocampal neurons at limbic epilepsy

Autors: 
Kornilov Maksim Vyacheslavovich, Saratov State University
Kapustnikov Anton Aleksandrovich, Saratov State University
Sozonov Evgenii Aleksandrovich, Saratov State University
Sysoeva Marina Vyacheslavovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Sysoev Ilya Vyacheslavovich, Saratov State University
Abstract: 

This study aims to consider an ensemble of hippocampal neurons coupled in a ring, which may be responsible for generation of the primary rhythm at limbic epilepsy.

Methods. Model equations were solved numerically. To determine the areas of oscillatory and excitable regime existance for a single neuron, the bifurcation analysis for the leakadge conductivity parameter was performed. The coupling delays was not implemented directly, instead, inertia in the synapse was introduced. To determine the stability of generation some couplings were removed and parameter detunig was introduced.

Results. In the single neuron model the bistability region was detected, in which a stable focus coexhists with a limit cycle. Two main synchronous regimes were detected. The first regime inherits frequency of individual oscillator, with a relatively small phase shift between oscillators in the ring. The frequency of the second regime depends on the number of neurons in the ring, with the phase shift between neighbor oscillators being equal to ratio of oscillation period and number of neurons. This second regime can occur both for the parameters corresponding to bistabler regime in the individual neuron and for the parameters at which the only existing attractor is stable focus. The second synchronous regime is preserved for parameter detuning of 2% from their absolute values.

Conclusion. It was shown that in the mathematical model of the ring of hippocampal neurons, where all the main significant currents are taken into account for individual neurons, and their parameters can vary, there is an oscillatory mode, the frequency of which is determined by the length of the ring and synaptic conductivity, rather than by the parameters individual neuron. In this case, a small change in synaptic conductivity can lead to a sharp (2–7 times) change in the generation frequency.

Acknowledgments: 
This study was supported by Russian Science Foundation, grant No. 19-72-10030-П, https://rscf.ru/project/19-72-10030/
Reference: 
  1. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW, Moshe SL, Nordli DR, Perucca E, Tomson T, Wiebe S, Zhang Y-H, Zuberi SM. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512–521. DOI: 10.1111/epi.13709.
  2. Suffczynski P,Kalitzin S, Lopes Da Silva FH. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience. 2004;126(2):467–484. DOI: 10.1016/ j.neuroscience.2004.03.014.
  3. Medvedeva TM, Sysoeva MV, Luttjohann A, van Luijtelaar G, Sysoev IV. Dynamical mesoscale model of absence seizures in genetic models. PLoS ONE. 2020;15(9):e239125. DOI: 10.1371/ journal.pone.0239125.
  4. Kapustnikov AA, Sysoeva MV, Sysoev IV. Transient dynamics in a class of mathematical models of epileptic seizures. Communications in Nonlinear Science and Numerical Simulation. 2022;109:106284. DOI: 10.1016/j.cnsns.2022.106284.
  5. Taylor PN, Wang Y, Goodfellow M, Dauwels J, Moeller F, Stephani U, Baier G. A Computational Study of Stimulus Driven Epileptic Seizure Abatement. PLoS ONE. 2014;9(12):e114316. DOI: 10.1371/journal.pone.0114316.
  6. Bertram EH. The functional anatomy of spontaneous seizures in a rat model of chronic limbic epilepsy. Epilepsia. 1997;38(1):95–105. DOI: 10.1111/j.1528-1157.1997.tb01083.x.
  7. Blumenfeld H, Varghese GI, Purcaro MJ, Motelow JE, Enev M, McNally KA, Levin AR, Hirsch LJ, Tikofsky R, Zubal IG, Paige AL, Spencer SS. Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain. 2009;132(4):999–1012. DOI: 10.1093/ brain/awp028.
  8. Kornilov MV, Sysoev IV. Mathematical Model of a Main Rhythm in Limbic Seizures. Mathematics. 2023;11(5):1233. DOI: 10.3390/math11051233.
  9. Mysin IE, Kitchigina VF, Kazanovich YB. Phase relations of theta oscillations in a computer model of the hippocampal CA1 field: Key role of Schaffer collaterals. Neural Networks. 2019;116: 119–138. DOI: 10.1016/j.neunet.2019.04.004.
  10. Egorov NM, Sysoeva MV, Ponomarenko VI, Kornilov MV, Sysoev IV. Ring generator of neuron-like activity with tunable frequency. Izvestiya VUZ. Applied Nonlinear Dynamics. 2023;31(1): 103–120. DOI: 10.18500/0869-6632-003025.
  11. Hodgkin A, Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology. 1952;117(4):500–544. DOI: 10.1113/ jphysiol.1952.sp004764.
  12. Tateno K, Hayashi H, Ishizuka S. Complexity of spatiotemporal activity of a neural network model which depends on the degree of synchronization. Neural Network. 1998;11(6):985–1003. DOI: 10.1016/s0893-6080(98)00086-0.
  13. Yoshida M, Hayashi H. Emergence of sequence sensitivity in a hippocampal CA3–CA1 model. Neural Networks. 2007;20(6):653–667. DOI: 10.1016/j.neunet.2007.05.003.
  14. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods. 2020;17(3):261–272. DOI: 10.1038/s41592-019- 0686-2.
  15. Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press; 2001. 411 p. DOI: 10.1017/CBO9780511755743.
  16. Senhadji L, Wendling F. Epileptic transient detection: wavelets and time-frequency approaches. Neurophysiologie Clinique/Clinical Neurophysiology. 2002;32(3):175–192. DOI: 10.1016/S0987- 7053(02)00304-0.
  17. Sobayo T, Fine AS, Gunnar E, Kazlauskas C, Nicholls D, Mogul DJ. Synchrony Dynamics Across Brain Structures in Limbic Epilepsy Vary Between Initiation and Termination Phases of Seizures. IEEE Transactions on Biomedical Engineering. 2013;60(3):821–829. DOI: 10.1109/TBME.2012. 2189113.
  18. Scorcioni R, Lazarewicz MT, Ascoli GA. Quantitative morphometry of hippocampal pyramidal cells: differences between anatomical classes and reconstructing laboratories. Journal of Comparative Neurology. 2004;473(2):177–193. DOI: 10.1002/cne.20067.
  19. Wendling F, Bartolomei F, Bellanger JJ, Chauvel P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. European Journal of Neuroscience. 2002;15(9):1499–1508. DOI: 10.1046/j.1460-9568.2002.01985.x.
  20. Paz JT; Huguenard JR. Microcircuits and their interactions in epilepsy: Is the focus out of focus? Nature Neuroscience. 2015;18:351–359. DOI: 10.1038/nn.3950.
  21. Myers MH, Kozma R. Mesoscopic neuron population modeling of normal/epileptic brain dynamics. Cognitive neurodynamics. 2018;12:211–223. DOI: 10.1007/s11571-017-9468-7.
  22. Alexander A, Maroso M, Soltesz I. Organization and control of epileptic circuits in temporal lobe epilepsy. Progress in brain research. 2016. Vol. 226. P. 127–154. DOI: 10.1016/bs.pbr.2016.04.007.
  23. Toyoda I, Bower MR, Leyva F, Buckmaster PS. Early activation of ventral hippocampus and subiculum during spontaneous seizures in a rat model of temporal lobe epilepsy. Journal of Neuroscience. 2013;33(27):11100–11115. DOI: 10.1523/JNEUROSCI.0472-13.2013.
  24. Muller RU, Stead M, Pach J. The hippocampus as a cognitive graph. The Journal of general physiology. 1996;107(6):663–694. DOI: 10.1085/jgp.107.6.663.
  25. Petrik S, San Antonio-Arce V, Steinhoff BJ, Syrbe S, Bast T, Scheiwe C, Brandt A, Beck J, Schulze-Bonhage A. Epilepsy surgery: Late seizure recurrence after initial complete seizure freedom. Epilepsia. 2021;62(5):1092–1104. DOI: 10.1111/epi.16893.
  26. Medvedeva TM, Sysoeva MV, van Luijtelaar G, Sysoev IV. Modeling spike-wave discharges by a complex network of neuronal oscillators. Neural Networks. 2018;98:271–282. DOI: 10.1016/ j.neunet.2017.12.002.
  27. Gerster M, Berner R, Sawicki J, Zakharova A, Hlinka J, Lehnertz K, Scholl E. FitzHugh–Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena. Chaos. 2020;30:123130. DOI: 10.1063/5.0021420.
Received: 
19.11.2023
Accepted: 
18.02.2024
Available online: 
07.05.2024
Published: 
31.05.2024