ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Vadivasova T. E., Slepnev A. V. The studies of the arising of oscillations in the quasi­harmonic model of the self­sustained oscillatory medium under multiplicative noise excitation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 5, pp. 3-13. DOI: 10.18500/0869-6632-2012-20-5-3-13

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 93)
Article type: 
530.182, 537.86

The studies of the arising of oscillations in the quasi­harmonic model of the self­sustained oscillatory medium under multiplicative noise excitation

Vadivasova Tatjana Evgenevna, Saratov State University
Slepnev Andrej Vjacheslavovich, Saratov State University

The multiplicative noise influence on the self-sustained oscillatory medium near the oscillation threshold is studied. The chain of the identical quasi-harmonic self-sustained oscillators with the periodic boundary conditions is taken as a simplest model of the oscillatory medium. The parameters of the oscillators are modulated with the white Gaussian noise. The stochastic bifurcations are analyzed for the cases of homogenous and spatially-nonhomogenous noise. 

  1. Garcia-Ojalvo J, Sancho JM. Noise in Spatially Extended Systems. New York: Springer; 1999. 307 p. DOI: 10.1007/978-1-4612-1536-3.
  2. Neiman A, Schimansky-Geier L, Cornell-Bell A, Moss F. Noise-enhanced phase synchronization in excitable media. Phys. Rev. Lett. 1999;83(23):4896–4899. DOI: 10.1103/PhysRevLett.83.4896.
  3. Hu B, Zhou C. Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance. Phys. Rev. E. 2000;61(2):R1001–R1004. DOI: 10.1103/PhysRevE.61.R1001.
  4. Lindner JF, Chandramouli S, Bulsara AR, Locher M, Ditto WL. Noise enhanced propagation. Phys. Rev. Lett. 1998;81(23):5048–5051. DOI: 10.1103/PhysRevLett.81.5048.
  5. Vadivasova TE, Strelkova GI, Anishchenko VS. Phase-frequency synchronization in a chain of periodic oscillators in the presence of noise and harmonic forcings. Phys. Rev. E. 2001;63(3):036225. DOI: 10.1103/PhysRevE.63.036225.
  6. Anishchenko VS, Akopov AA, Vadivasova TE, Strelkova GI. Mechanisms of chaos onset in an inhomogeneous medium under cluster synchronization destruction. New Journal of Physics. 2006;8(6):84. DOI: 10.1088/1367-2630/8/6/084.
  7. Shabunin AV, Feudel U, Astakhov VV. Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators. Phys. Rev. E. 2009;80(2):026211. DOI: 10.1103/PhysRevE.80.026211.
  8. Slepnev AV, Vadivasova TE. Period doubling bifurcations and noise excitation effects in a multistable self-sustained oscillatory medium. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(4):53–67 (in Russian). DOI: 10.18500/0869-6632-2011-19-4-53-67.
  9. Horsthemke W, Lefever R. Noise-Induced Transitions. Berlin: Springer; 1984. 322 p. DOI: 10.1007/3-540-36852-3.
  10. Arnold L. Bifurcation Theory. In: Random Dynamical Systems. Chapter 9. Berlin: Springer; 1998. P. 465–531. DOI: 10.1007/978-3-662-12878-7_9.
  11. Arnold L, Sri Namachchivaya N, Schenk-Hoppe KR. Toward an understanding of stochastic Hopf bifurcation: A case study. Int. J. Bifurcat. Chaos. 1996;6(11):1947–1975. DOI: 10.1142/S0218127496001272.
  12. Vadivasova TE, Anishchenko VS. Stochastic bifurcations. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(5):3–16 (in Russian). DOI: 10.18500/0869-6632-2009-17-5-3-16.
Short text (in English):
(downloads: 54)