ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Demina N. V. The study of the unidirectionally coupled generators of robust chaos and wide band communication scheme based on its synchronization. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 3, pp. 18-28. DOI: 10.18500/0869-6632-2013-21-3-18-28

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 104)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

The study of the unidirectionally coupled generators of robust chaos and wide band communication scheme based on its synchronization

Autors: 
Demina Natalija Vjacheslavovna, Saratov State University
Abstract: 

A numerical simulation of a wide band or secure communication scheme, based on nonlinear admixture of an information signal to the chaotic one, and on synchronization of the transmitter and receiver generators, manifesting hyperbolic chaos. Synchronization of the transmitter and receiver is provided by a strong unidirectional coupling between them. The study of the possibility of synchronization between subsystems and functionality of the communication scheme are presented.

Reference: 
  1. Dmitriev AS, Panas AI. Dynamic chaos: novel type of information carrier for communication systems. Moscow: Fizmatlit; 2002. 252 p. (In Russian).
  2. Chen JY, Wong KW, Cheng LM, Shuai JW. A secure communication scheme based on the phase synchronization of chaotic systems. Chaos. 2003;13(2):508–514. DOI: 10.1063/1.1564934.
  3. Kuznetsov SP. Example of a physical system with a hyperbolic attractor of the Smale-Williams type. Phys. Rev Lett. 2005;95(14):144101. DOI: 10.1103/PhysRevLett.95.144101.
  4. Kuznetsov SP. Dynamic chaos and hyperbolic attractors. From mathematics to physics. Moscow-Izhevsk: ICS; 2013. 488 p. (In Russian).
  5. Isaeva OB, Jalnine AYu, Kuznetsov SP. Arnold’s cat map dynamics in a system of coupled nonautonomous van der Pol oscillators. Phys. Rev. E. 2006;74(4):046207. DOI: 10.1103/PhysRevE.74.046207.
  6. Kruglov VP, Kuznetsov SP. An autonomous system with attractor of Smale–Williams type with resonance transfer of excitation in a ring array of van der Pol oscillators. Communications in Nonlinear Science and Numerical Simulation. 2011;16(8):3219–3223. DOI:10.1016/j.cnsns.2010.11.027.
  7. Isaeva OB, Kuznetsov SP, Mosekilde E. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation. Phys. Rev. E. 2011;84(1):016228. DOI:10.1103/PhysRevE.84.016228.
  8. Kuptsov PV, Kuznetsov SP, Pikovsky A. Hyperbolic chaos of Turing patterns. Phys. Rev. Lett. 2012;108(19):194101. DOI:10.1103/PhysRevLett.108.194101.
  9. Kuznetsov AS, Kuznetsov SP. Parametric generation of robust chaos with time-delayed feedback and modulated pump source. Communications in Nonlinear Science and Numerical Simulation. 2013;18(3):728–734. DOI:10.1016/j.cnsns.2012.08.006.
  10. Isaeva OB, Kuznetsov AS, Kuznetsov SP. Hyperbolic chaos of standing wave patterns generated parametrically by a modulated pump source. Phys. Rev. E. 2013;87(4):040901. DOI: 10.1103/PhysRevE.87.040901.
  11. Isaeva OB, Kuznetsov AS, Kuznetsov SP. Hyperbolic chaos in parametric oscillations of a string. Nelin. Dinam. 2013;9(1):3–10.
  12. Kuznetsov SP. Electronic circuits manifesting hyperbolic chaos and simulation of their dynamics using software package multisim. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(5):98-115. DOI: 10.18500/0869-6632-2011-19-5-98-115.
  13. Kuznetsov SP, Seleznev EP. A strange attractor of the Smale-Williams type in the chaotic dynamics of a physical system. Journal of Experimental and Theoretical Physics. 2006;102(2):355-364. DOI: 10.1134/S1063776106020166..
  14. Kuznetsov SP, Ponomorenko VI. Realization of a strange attractor of the Smale-Williams type in a radiotechnical delay-feedback oscillator. Technical Physics Letters. 2008;34(9):771–773. DOI: 10.1134/S1063785008090162.
  15. Kuznetsov SP, Sataev IR. Hyperbolic attractor in a system of coupled nonauto-nomous van der Pol oscillators: Numerical test for expanding and contracting cones. Phys. Lett. A. 2007;365(1–2):97–104. DOI:10.1016/j.physleta.2006.12.071.
  16. Kuznetsov AP, Sataev IR. Verification of hyperbolicity conditions for a chaotic attractor in a system of coupled nonautonomous van der Pol oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2006;14(5):3-29. DOI: 10.18500/0869-6632-2006-14-5-3-29.
  17. Wilczak D. Uniformly hyperbolic attractor of the Smale–Williams type for a Poincare map in the Kuznetsov system. SIAM J. Applied Dynamical Systems. 2010;9:1263–1283. DOI:10.1137/100795176.
  18. Jalnin AJ. Information transmission systems based on generators of gross chaos. Abstracts of reports of the All-Russian Conference «NNNPh». 2011; p. 114.
  19. Jalnin AJ. Chaotic phase modulation: New dynamic chaos-based information transmission scheme with modulated phase dynamics. Abstracts of reports of the All-Russian Conference «NNNPh». 2010; p. 148.
  20. Kuptsov PV, Kuznetsov SP. Transition to a synchronous chaos regime in a system of coupled non-autonomous oscillators presented in terms of amplitude equations. Nelin. Dinam. 2006;2(3):307–331.
  21. Arzhanuhina DS. On scenarios of hyperbolic chaos destruction in model maps on torus with dissipative perturbation. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(1):117-123. DOI: 10.18500/0869-6632-2012-20-1-117-123.
  22. Turaev DV, Shilnikov LP. Blue sky catastrophes. Dokl. Akad. Nauk. 1995;342(5):596–599.
  23. Isaeva OB, Kuznetsov SP, Sataev IR. A «saddle-node» bifurcation scenario for birth or destruction of a Smale–Williams solenoid. Chaos. 2012;22(4):043111. DOI:10.1063/1.4766590.
Received: 
04.03.2013
Accepted: 
04.03.2013
Published: 
31.10.2013
Short text (in English):
(downloads: 104)