ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Kurkin S. A., Koronovskii A. A., Hramov A. E., Egorov E. N., Runnova A. E., Magda I. I., Melezhik O. G. Three-­dimensional simulation of virtode with toroidal cavities. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 5, pp. 121-136. DOI: 10.18500/0869-6632-2012-20-5-121-136

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 142)
Article type: 

Three-­dimensional simulation of virtode with toroidal cavities

Kurkin Semen Andreevich, Innopolis University
Koronovskii Aleksei Aleksandrovich, Saratov State University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University
Egorov Evgenij Nikolaevich, Saratov State University
Runnova Anastasia Evgenevna, Saratov State University
Magda Igor Ivanovich, National Science Center Kharkov Institute of Physics and Technology
Melezhik Olga Georgievna, National Science Center Kharkov Institute of Physics and Technology

The results of preliminary 3D fully electromagnetic simulation of microwave generator with virtual cathode and external feedback loop (virtode) are discussed in this paper. The feedback is realized by the velocity modulation of electron beam in the accelerating gap of electron gun with the electromagnetic signal taken with output cavity placed in the virtual cathode area. It has been shown that there is a possibility of increase of power and regularity of oscillations by adjusting the feedback resonators and possibility of generation at higher harmonics of virtual cathode oscillations in the system. In the future, it can be used to increase the frequency of vircator generation by creating the virtode frequency multiplier with cavities tuned to the higher harmonics of virtual cathode oscillations. 

  1. Granatstein VL, Alexeeff I. High Power Microwave Sources. Artech House Microwave Library; 1987.
  2. Dubinov AE, Selemir VD. Electronic devices with virtual cathode. J. Commun. Technol. Electron. 2002;47(6):575 (in Russian).
  3. Trubetskov DI, Khramov AE. Lectures on Microwave Electronics for Physicists: In 2 Volumes. Moscow: Fizmatlit; 2003 (in Russian).
  4. Didenko AN, Krasik YE, Perelygin SF, Fomenko GP. Generation of high-power microwave radiation by a relativistic electron beam in a triode system. Sov. Tech. Phys. Lett. 1979;5(6):321–324 (in Russian).
  5. Didenko AN, Zherlitsyn AG, Sulakshin AS, et al. Generation of powerful microwave radiation in a triode system by a high-current beam of microsecond duration. Sov. Tech. Phys. Lett. 1983;9(24):48 (in Russian).
  6. Mahaffey RA, Sprangle PA, Golden J, Kapetanakos CA. High-power microwaves from a non-isochronous reflecting electron system. Phys. Rev. Lett. 1977;39(13):843–846. DOI: 10.1103/PhysRevLett.39.843.
  7. Anfinogentov VG, Khramov AE. On the mechanism of occurrence of chaotic dynamics in a vacuum microwave generator with a virtual cathode. Radiophys. Quantum Electron. 1998;41(9):764–770. DOI: 10.1007/BF02677631.
  8. Anfinogentov VG, Khramov AE. Complex behavior of an electron beam with a virtual cathode and generation of chaotic signals in virode systems. Bulletin of the Russian Academy of Sciences: Physics. 1997;61(12):2391–2401 (in Russian).
  9. Benford J, Swegle JA, Schamiloglu E. High Power Microwaves. CRC Press, Taylor and Francis; 2007. 552 p. DOI: 10.1201/9781420012064.
  10. Koronovskii AA, Trubetskov DI, Khramov AE. Methods of Nonlinear Dynamics and Chaos in Problems of Microwave Electronics. Vol. 2: Non-Stationary and Chaotic Processes. Moscow: Fizmatlit; 2009. 384 p. (in Russian).
  11. Gadetsky NN, Magda II, Naysteter SI, Prokopenko YV, Chumakov VI. Generator on supercritical current REB with controlled feedback – virod. Plasma Physics Reports. 1993;19(4):530.
  12. Jiang W, Masugata K, Yatsui K. New configuration of a virtual cathode oscillator for microwave generation. Phys. Plasmas. 1995;2(12):4635–4640. DOI: 10.1063/1.870954.
  13. Kalinin YA, Kuznetsov NN, Ukrainskaya TN. Investigation of wide-band noise-like oscillations in intense beams of charged particles in the mode of formation of a virtual cathode. Izvestiya VUZ. Applied Nonlinear Dynamics. 2002;10(5):32–35 (in Russian).
  14. Egorov EN, Kalinin YA, Levin YI, Trubetskov DI, Khramov AE. Vacuum generators of broadband chaotic oscillations based on nonrelativistic electron beams with virtual cathode. Bulletin of the Russian Academy of Sciences: Physics. 2005;69(12):1921–1924.
  15. Kalinin YA, Koronovskii AA, Khramov AE, Egorov EN, Filatov RA. Experimental and theoretical investigations of stochastic oscillatory phenomena in a nonrelativistic electron beam with a virtual cathode. Plasma Physics Reports. 2005;31(11):938–952. DOI: 10.1134/1.2131130.
  16. Kurkin SA, Hramov AE, Koronovskii AA. Chaotic signal generation in low-voltage vircator with electron source shielded from external magnetic field. Tech. Phys. Lett. 2011;37(2):144–147. DOI: 10.1134/S106378501102009X.
  17. Kurkin SA, Koronovskii AA, Hramov AE. Output microwave radiation power of low-voltage vircator with external inhomogeneous magnetic field. Tech. Phys. Lett. 2011;37(4):356–359. DOI: 10.1134/S1063785011040225.
  18. Kurkin SA, Koronovskii AA, Hramov AE. Formation and dynamics of a virtual cathode in a tubular electron beam placed in a magnetic field. Tech. Phys. 2009;54(10):1520. DOI: 10.1134/S106378420910017X.
  19. Hramov AE, Koronovskiy AA, Kurkin SA, Rempen IS. Chaotic oscillations in electron beam with virtual cathode in external magnetic field. Int. J. Electron. 2011;98(11):1549–1564. DOI: 10.1080/00207217.2011.601447.
  20. Hramov AE, Koronovskii AA, Kurkin SA. Numerical study of chaotic oscillations in the electron beam with virtual cathode in the external non-uniform magnetic fields. Phys. Lett. A. 2010;374(30):3057–3066. DOI: 10.1016/j.physleta.2010.05.047.
  21. Benford J, Price D, Sze H, Bromley D. Interaction of a vircator microwave generator with an enclosing resonant cavity. Journal of Applied Physics. 1987;61(5):2098–2100. DOI: 10.1063/1.337965.
  22. Khramov AE. On the influence of feedback on the generation characteristics of a device with a virtual cathode. J. Commun. Technol. Electron. 1999;44(1):116 (in Russian).
  23. Friedman M, Krall J, Lau YY, Serlin V. Efficient generation of multi-gigawatt rf power by a klystron-like amplifier. Rev. Sci. Instrum. 1990;61(1):171–181. DOI: 10.1063/1.1141869.
  24. Tsimring SE. Electron Beams and Microwave Vacuum Electronics. John Wiley and Sons, Inc., Hoboken, New Jersey; 2007. 600 p. DOI: 10.1002/0470053763.
  25. Roshal AS. Simulation of Charged Beams. Moscow: Atomizdat; 1979. 224 p. (in Russian).
  26. Birdsall CK, Langdon AB. Plasma Physics, Via Computer Simulation. NY.: McGraw-Hill; 1985. 504 p. DOI: 10.1201/9781315275048.
  27. Sveshnikov AG, Yakunin SA. Numerical models of collisionless plasma dynamics. Mathematical Models and Computer Simulations. 1989;1(4):1–25 (in Russian). 
  28. Anderson TM, Mondelli AA, Levush B, Verboncoeur JP, Birdsall CK. Advances in modelling and simulation of vacuum electronic devices. Proceedings IEEE. 1999;87(5):804–839. DOI: 10.1109/5.757256.
  29. Egorov EN, Hramov AE. Investigation of the chaotic dynamics of an electron beam with a virtual cathode in an external magnetic field. Plasma Physics Reports. 2006;32(8):683–694. DOI: 10.1134/S1063780X06080058.
  30. Grigoriev AD. Modern methods of modeling non-stationary electromagnetic fields. Izvestiya VUZ. Applied Nonlinear Dynamics. 1999;7(4):48–57 (in Russian).
  31. Boris JP, Lee R. Optimization of particle calculations in 2 and 3 dimensions. Commun. Math. Phys. 1969;12:131.
  32. Didenko AN. The mechanism of generation of powerful microwave oscillations in the vircator. Dokl. Phys. 1991;321(4):727–729 (in Russian).
  33. Didenko AN, Rashchikov VI. Generation of powerful microwave oscillations in systems with a virtual cathode. Plasma Physics Reports. 1992;18(9):1182–1190 (in Russian).
  34. Alyamovsky IV. Electron Beams and Electron Guns. Moscow: Sovetskoe Radio; 1966. 454 p. (in Russian).
  35. Khramov AE. Chaos and the formation of structures in an electron flow with a virtual cathode in a confined drift space. J. Commun. Technol. Electron. 1999;44(5):551–556 (in Russian).
  36. Koronovskii AA, Khramov AE. Wavelet bicoherence analysis as a method for investigating coherent structures in an electron beam with an overcritical current. Plasma Physics Reports. 2002;28(8):666–681. DOI: 10.1134/1.1501324.
  37. Hramov AE, Rempen IS. Investigation of the complex dynamics and regime control in Pierce diode with the delay feedback. Int. J. Electron. 2004;91(1):1–12. DOI: 10.1080/00207210310001658932.
  38. Hramov AE, Koronovskii AA, Rempen IS. Controlling chaos in spatially extended beam-plasma system by the continuous delayed feedback. Chaos. 2006;16(1):013123. DOI: 10.1063/1.2168394.
Short text (in English):
(downloads: 130)