The article published as Early Access!
Influence of Gaussian noise and Levy noise on the phase dynamics of the ensemble of Kuramoto-like oscillators of first and second order
The purpose of this study is to determine the stability threshold of the dynamic modes of the ensemble of phase Kuramoto-like oscillators, describing the behavior of a simple power grid model with a ring topology, under the external influence of Gaussian noise and Levy noise, to evaluate the results and determine the threshold values of noise at which the considered dynamic model is the most sensitive to noise and demonstrates a change of the steady state.
Methods. In this paper, two ensembles of Kuramoto-like phase oscillators with the same topology but different number of oscillators are investigated. The ensembles consist of second and first order phase oscillators modeling the dynamics of generators and consumers in the power grid, respectively. In this work, mode maps are computed and used, from which regions with different synchronous dynamics are selected. In the selected regions, a set of initial conditions is fixed and the ensemble under study is modeled in the presence of noise of different types and intensities. The obtained result is evaluated with the help of calculated spatio-temporal diagrams, values of the Kuramoto parameter and statistical characteristics estimated from the realizations of oscillations in time.
Results. It has been shown that a power grid model consisting of Kuramoto-like phase oscillators exhibits different robustness to external noise disturbances depending on the type of noise disturbance and the steady-state dynamic regime. It was demonstrated that the frequency synchronization mode of all oscillators, independent of the initial conditions, is insensitive to the influence of white noise of high intensity, both Gaussian and Levy noise. Whereas, in the region of coexistence of synchronous and asynchronous behavior, depending on the initial conditions, a change of phase dynamics under the influence of different noise is observed. Numerical experiment has shown that the power grid model is more susceptible to Levy noise due to the noise features associated with random emissions, which in turn can be interpreted as random impulses.
Conclusion. In a power grid model represented by two ensembles consisting of different numbers of Kuramoto-like phase oscillators of second and first order, different modes of frequency and phase dynamics of the oscillators are established. A numerical experiment with the influence of Gaussian noise and Levy noise is carried out for the obtained modes. It is shown that the model under study is more sensitive to Levy noise, the influence of which leads to a change of the dynamic mode due to the influence of strong random pulses.
- Ackermann T, Andersson G, Soder L. Distributed generation: a definition. Electric Power Systems Research. 2001;57(3):195–204. DOI: 10.1016/S0378-7796(01)00101-8.
- Milan P, Wachter M, Peinke J. Turbulent character of wind energy. Phys. Rev. Lett. 2013;110(13): 138701. DOI: 10.1103/PhysRevLett.110.138701.
- Heide D, von Bremen L, Greiner M, Hoffmann C, Speckmann M, Bofinger S. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renewable Energy. 2010;35(11):2483–2489. DOI: 10.1016/j.renene.2010.03.012.
- Heide D, Greiner M, von Bremen L, Hoffmann C. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation. Renewable Energy. 2011;36(9):2515–2523. DOI: 10.1016/j.renene.2011.02.009.
- Anvari M, Lohmann G, Wachter M, Milan P, Lorenz E, Heinemann D, Tabar MRR, Peinke J. Short term fluctuations of wind and solar power systems. New J. Phys. 2016;18(6):063027. DOI: 10.1088/1367-2630/18/6/063027.
- Anvari M, Wachter M, Peinke J. Phase locking of wind turbines leads to intermittent power production. Europhysics Letters. 2017;116(6):60009. DOI: 10.1209/0295-5075/116/60009.
- Schmietendorf K, Peinke J, Kamps O. The impact of turbulent renewable energy production on power grid stability and quality. Eur. Phys. J. B. 2017;90:222. DOI: 10.1140/epjb/e2017-80352-8.
- Schafer B, Beck C, Aihara K, Witthaut D, Timme M. Non-Gaussian power grid frequency fluctuations characterized by Levy-stable laws and superstatistics. Nat. Energy. 2018;3(2):119–126. DOI: 10.1038/s41560-017-0058-z.
- Lee D, Chiang Y, Chen YT, Tsai HH. Impacts of battery energy storage system on power grid smartness: Case study of Taiwan Power Company. Journal of Energy Storage. 2024;86:111188. DOI: 10.1016/j.est.2024.111188.
- Dorfler F, Bullo F. Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM Journal on Control and Optimization. 2012;50(3):1616–1642. DOI: 10.1137/110851584.
- Arenas A, Diaz-Guilera A, Kurths J, Moreno Y, Zhou C. Synchronization in complex networks. Physics Reports. 2008;469(3):93–153. DOI: 10.1016/j.physrep.2008.09.002.
- Filatrella G, Nielsen AH, Pedersen NF. Analysis of a power grid using a Kuramoto-like model. Eur. Phys. J. B. 2008;61:485–491. DOI: 10.1140/epjb/e2008-00098-8.
- Choi YP, Ha SY, Yun SB. Complete synchronization of Kuramoto oscillators with finite inertia. Physica D. 2011;240(1):32–44. DOI: 10.1016/j.physd.2010.08.004.
- Lozano S, Buzna L, Diaz-Guilera A. Role of network topology in the synchronization of power systems. Eur. Phys. J. B. 2012;85:231. DOI: 10.1140/epjb/e2012-30209-9.
- Fortuna L, Frasca M, Sarra Fiore A. A network of oscillators emulating the Italian high-voltage power grid. International Journal of Modern Physics B. 2012;26(25):1246011. DOI: 10.1142/S0217979212460113.
- Rohden M, Sorge A, Timme M, Witthaut D. Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 2012;109(6):064101. DOI: 10.1103/PhysRevLett.109.064101.
- Carareto R, Baptista MS, Grebogi C. Natural synchronization in power-grids with anti-correlated units. Communications in Nonlinear Science and Numerical Simulation. 2013;18(4):1035–1046. DOI: 10.1016/j.cnsns.2012.08.030.
- Motter AE, Myers SA, Anghel M, Nishikawa T. Spontaneous synchrony in power-grid networks. Nature Phys. 2013;9(3):191–197. DOI: 10.1038/nphys2535.
- Dorfler F, Bullo F. Synchronization in complex networks of phase oscillators: A survey. Automatica. 2014;50(6):1539–1564. DOI: 10.1016/j.automatica.2014.04.012.
- Olmi S, Navas A, Boccaletti S, Torcini A. Hysteretic transitions in the Kuramoto model with inertia. Physical Review E. 2014;90(4):042905. DOI: 10.1103/PhysRevE.90.042905.
- Grzybowski JMV, Macau EEN, Yoneyama T. On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators. Chaos. 2016;26(11):113113. DOI: 10.1063/1.4967850.
- Mirollo RE, Strogatz SH. The spectrum of the locked state for the Kuramoto model of coupled oscillators. Physica D. 2005;205(1–4):249–266. DOI: 10.1016/j.physd.2005.01.017.
- Delabays R, Coletta T, Jacquod P. Multistability of phase-locking in equal-frequency Kuramoto models on planar graphs. Journal of Mathematical Physics. 2017;58(3):032703. DOI: 10.1063/1.4978697.
- Nishikawa T, Motter AE. Comparative analysis of existing models for power-grid synchronization. New Journal of Physics. 2015;17(1):015012. DOI: 10.1088/1367-2630/17/1/015012.
- Manik D, Witthaut D, Schafer B, Matthiae M, Sorge A, Rohden M, Katifori E, Timme M. Supply networks: Instabilities without overload. The European Physical Journal Special Topics. 2014;223:2527–2547. DOI: 10.1140/epjst/e2014-02274-y.
- Coletta T, Jacquod P. Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids. Physical Review E. 2016;93(3):032222. DOI: 10.1103/PhysRevE.93.032222.
- Machowski J, Lubosny Z, Bialek JW, Bumby JR. Power System Dynamics: Stability and Control. N.Y.: Wiley; 2020. 896 p.
- Tumash L, Olmi S, Scholl E. Stability and control of power grids with diluted network topology. Chaos. 2019;29(12):123105. DOI: 10.1063/1.5111686.
- Gotz M, Rapp M, Dostert K. Power line channel characteristics and their effect on communication system design. IEEE Communications Magazine. 2004;42(4):78–86. DOI: 10.1109/MCOM.2004.1284933.
- Gonzalez-Ramos J, Uribe-Perez N, Sendin A, Gil D, de la Vega D, Fernandez I, Nunez IJ. Upgrading the power grid functionalities with broadband power line communications: Basis, applications, current trends and challenges. Sensors. 2022;22(12):4348. DOI: 10.3390/s22124348.
- Bai T, Zhang H, Wang J, Xu C, Elkashlan M, Nallanathan A, Hanzo L. Fifty years of noise modeling and mitigation in power-line communications. IEEE Communications Surveys & Tutorials. 2020;23(1):41–69. DOI: 10.1109/comst.2020.3033748.
- Antoniali M, Versolatto F, Tonello AM. An experimental characterization of the PLC noise at the source. IEEE Transactions on Power Delivery. 2015;31(3):1068–1075. DOI: 10.1109/TPWRD.2015.2452939.
- Di Bert L, Caldera P, Schwingshackl D, Tonello AM. On noise modeling for power line communications. In: IEEE International Symposium on Power Line Communications and Its Applications. 2011, Udine, Italy. IEEE; 2011. P. 283–288. DOI: 10.1109/ISPLC.2011.5764408.
- Meng H, Guan YL, Chen S. Modeling and analysis of noise effects on broadband power-line communications. IEEE Transactions on Power Delivery. 2005;20(2):630–637. DOI: 10.1109/TPWRD.2005.844349.
- Nassar M, Gulati K, Mortazavi Y, Evans BL. Statistical modeling of asynchronous impulsive noise in powerline communication networks. In: 2011 IEEE Global Telecommunications ConferenceGLOBECOM 2011. 2011, Houston, TX, USA. IEEE; 2011. P. 1–6. DOI: 10.1109/GLOCOM.2011.6134477.
- Ferreira HC, Lampe L, Newbury J, Swart TG. Power Line Communications: Theory and Applications for Narrowband and Broadband Communications over Power Lines. N.Y.: Wiley; 2010. 536 p.
- Nassar M, Dabak A, Kim IH, Pande T, Evans BL. Cyclostationary noise modeling in narrowband powerline communication for smart grid applications. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2012, Kyoto, Japan. IEEE; 2012. P. 3089–3092. DOI: 10.1109/ICASSP.2012.6288568.
- Zimmermann M, Dostert K. Analysis and modeling of impulsive noise in broad-band powerline communications. IEEE Transactions on Electromagnetic Compatibility. 2002;44(1):249–258. DOI: 10.1109/15.990732.
- Klatt M, Meyer J, Schegner P, Koch A, Myrzik J, Darda T, Eberl G. Emission levels above 2 kHzLaboratory results and survey measurements in public low voltage grids. In: 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013). 2013, Stockholm, Sweden. IEEE; 2013. P. 1–4. DOI: 10.1049/cp.2013.1102.
- Fernandez I, Uribe-Perez N, Eizmendi I, Angulo I, de la Vega D, Arrinda A, Arzuaga T. Characterization of non-intentional emissions from distributed energy resources up to 500 kHz: A case study in Spain. International Journal of Electrical Power & Energy Systems. 2019;105:549–563. DOI: 10.1016/j.ijepes.2018.08.048.
- Yalcin T, Ozdemir M, Kostyla P, Leonowicz Z. Analysis of supra-harmonics in smart grids. In: IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). 2017, Milan, Italy. IEEE; 2017. P. 1–4. DOI: 10.1109/EEEIC.2017.7977812.
- Bollen M, Olofsson M, Larsson A, Ronnberg S, Lundmark M. Standards for supraharmonics (2 to 150 kHz). IEEE Electromagnetic Compatibility Magazine. 2014;3(1):114–119. DOI: 10.1109/ MEMC.2014.6798813.
- Larsson EA, Bollen MH, Wahlberg MG, Lundmark CM, Ronnberg SK. Measurements of high- frequency (2–150 kHz) distortion in low-voltage networks. IEEE Transactions on Power Delivery. 2010;25(3):1749–1757. DOI: 10.1109/TPWRD.2010.2041371.
- Larsson EOA, Bollen MHJ. Measurement result from 1 to 48 fluorescent lamps in the frequency range 2 to 150 kHz. In: Proceedings of 14th International Conference on Harmonics and Quality of Power-ICHQP 2010. 2010, Bergamo, Italy. IEEE; 2010. P. 1–8. DOI: 10.1109/ICHQP.2010.5625395.
- Ronnberg SK, Bollen MH. Emission from four types of LED lamps at frequencies up to 150 kHz. In: IEEE 15th International Conference on Harmonics and Quality of Power. 2012, Hong Kong, China. IEEE; 2012. P. 451–456. DOI: 10.1109/ICHQP.2012.6381216.
- Zimmerman R, Murillo-Sanchez C, Thomas R. MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Transactions on Power Systems. 2011;26(1):12-–19. DOI: 10.1109/TPWRS.2010.2051168.
- Canizares C, Fernandes T, Geraldi Jr E., Gerin-Lajoie L, Gibbard M, Hiskens I, Kersulis J, Kuiava R, Lima L, De Marco F, Martins N, Pal BC, Piardi A, Ramos R, dos Santos J, Silva D, Singh AK, Tamimi B, Vowles D. IEEE PES Technical Report TR-18: Benchmark Systems for Small-Signal Stability Analysis and Control. IEEE PES Resource Center; 2015. 390 p.
- Kuramoto Y. Self-entrainment of a population of coupled non-linear oscillators. In: Araki H, editor International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics. Vol. 39. Berlin: Springer; 1975. P. 420–422. DOI: 10.1007/BFb0013365.
- 391 reads